1 / 14

Lecture 16

Lecture 16. Chain polymerization. the net rate of change of radical concentration is calculated as Using steady-state approximation The rate of polymerization v p = k p [ . M][M] = k p [M]

abedi
Download Presentation

Lecture 16

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 16

  2. Chain polymerization • the net rate of change of radical concentration is calculated as • Using steady-state approximation • The rate of polymerization vp = kp[.M][M] = kp[M] • The above equation states that the rate of polymerization is proportional to the square root of the concentration of the initiator. • Kinetic chain length, v, • <n> = 2v

  3. 26.5 Features of homogeneous catalysis • Homogeneous catalyst: a catalyst in the same phase as the reaction mixture. • heterogeneous catalysts: a catalyst exists in a different phase from the reaction mixture.

  4. Example: Bromide-catalyzed decomposition of hydrogen peroxide: 2H2O2(aq) → 2H2O(l) + O2(g) is believed to proceed through the following pre-equilibrium: H3O+ + H2O2 ↔ H3O2+ + H2O H3O2+ + Br- → HOBr + H2O v = k[H3O2+][Br-] HOBr + H2O2 → H3O+ + O2 + Br- (fast) The second step is the rate-determining step. Thus the production rate of O2 can be expressed by the rate of the second step. The concentration of [H3O2+] can be solved [H3O2+] = K[H2O2][H3O+] Thus The rate depends on the concentration of Br- and on the pH of the solution (e.g [H3O+]).

  5. 26.6 Enzymes Three principal features of enzyme-catalyzed reactions: • For a given initial concentration of substrate, [S]0, the initial rate of product formation is proportional to the total concentration of enzyme, [E]0. • For a given [E]0 and low values of [S]0, the rate of product formation is proportional to [S]0. • For a given [E]0 and high values of [S]0, the rate of product formation becomes independent of [S]0, reaching a maximum value known as the maximum velocity, vmax.

  6. Michaelis-Menten mechanism E + S → ES k1 ES → E + S k2 ES → P + E k3 The rate of product formation: To get a solution for the above equation, one needs to know the value of [ES] Applying steady-state approximation Because [E]0 = [E] + [ES], and [S] ≈ [S]0

  7. Michaelis-Menten equation can be obtained by plug the value od [ES] into the rate law of P: • Michaelis-Menten constant: KM can also be expressed as [E][S]/[ES]. • Analysis: 1. When [S]0 << KM, the rate of product formation is proportional to [S]0: 2. When [S]0 >> KM, the rate of product formation reaches its maximum value, which is independent of [S]0: v = vmax = k3[E]0

  8. With the definition of KM and vmax, we get The above Equation can be rearranged into: Therefore, a straight line is expected with the slope of KM/vmax, and a y-intercept at 1/vmax when plotting 1/v versus 1/[S]0. Such a plot is called Lineweaver-Burk plot, • The catalytic efficiency of enzymes Catalytic constant (or, turnover number) of an enzyme, kcat, is the number of catalytic cycles (turnovers) performed by the active site in a given interval divided by the duration of the interval. • Catalytic efficiency, ε, of an enzyme is the ratio kcat/KM,

  9. Example 26.6a The enzyme carbonic anhydrase catalyses the hydration of CO2 in red blood cells to give bicarbonate ion: CO2 + H2O → HCO3- + H+The following data were obtained for the reaction at pH = 7.1, 273.5K, and an enzyme concentration of 2.3 nmol L-1.[CO2]/(mmol L-1) 1.25 2.5 5.0 20.0rate/(mol L-1 s-1) 2.78x10-5 5.00x10-5 8.33x10-5 1.67x10-4 Answer:Make a Lineweaver-Burk plot and determine the values of KM and vmax from the graph. The slope is 40s and y-intercept is 4.0x103 L mol-1s vmax = = 2.5 x10-4 mol L-1s-1 KM = (2.5 x10-4 mol L-1s-1)(40s) = 1.0 x 10-2 mol L-1 kcat = = 1.1 x 105s-1 ε = = 1.1 x 107 L mol-1 s-1

  10. 26.7 Autocatalysis • Autocatalysis: the catalysis of a reaction by its products A + P → 2P The rate law is = k[A][P] To find the integrated solution for the above differential equation, it is convenient to use the following notations [A] = [A]0 - x; [P] = [P]0 + x One gets = k([A]0 - x)( [P]0 + x) integrating the above ODE by using the following relation gives or rearrange into with a=([A]0 + [P]0)k and b = [P]0/[A]0

  11. 26.8 Oscillating reactions • The lotka-Volterra mechanism (a) A + X → X + X (b) X + Y → Y + Y (c) Y → B

  12. The brusselator (a) A → X (b) B + X → Y + C (c) 2X + Y → 3X (d) X → D

  13. The Oregonator A simple three variable model developed based on the Belousov-Zhabotinsky reaction system. (a) A + Y → X + C (b) X + Y → 2C (c) A + X → 2X + 2Z (d) X + X → A + C (e) B + Z → Y + P A: NaBrO3; Y: Br-; X: HBrO2; C: HOBr Z: Ce4+; B: Malonic acid

  14. 26.9 Bistability Consider the reaction: A + 2B → 3B, Assuming the above reaction is run in an open system with the inflow rate k0 Apply steady-state approximation to the above eqn. Because [B] = [A]0 –[A] -k[A]( [A]0 –[A])2 + k0([A]0 - [A]) = 0 ([A]0 - [A])(ko – k[A] ([A]0 - [A])) = 0 solutions of the above equation are: [A]0 - [A] = 0 (the initial state) and ko – k[A] ([A]0 - [A]) = 0 (this equation can be reorganized in the familiar format: k[A]2 - k[A]0[A] + k0 = 0, which has the following two solutions: In order to have any physical meaning, k[A]02 > 4k0

More Related