1 / 19

Fish Health Management

Fish Health Management. Dr. Craig Kasper Aquaculture Disease Processes FAS 2253. Fish Health Management. GOALS : Prevent introduction of disease to healthy animals. Prevent propigation of existing disease agents. Production of healthy, high quality fish.

Thomas
Download Presentation

Fish Health Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fish Health Management Dr. Craig Kasper Aquaculture Disease Processes FAS 2253

  2. Fish Health Management • GOALS : • Prevent introduction of disease to healthy animals. • Prevent propigation of existing disease agents. • Production of healthy, high quality fish.

  3. Principles of Health Maintenance • Maintain conditions which are designed to optimize growth, feed conversion, reproduction and survival. • Intensive aquaculture – high numbers, close quarters, lots of food!! (optimal?) • Enhance natural resistance • Well managed fish have healthy immune systems! • Healthy fish give rise to healthier offspring!

  4. Maintaining Health • Inverse relationship between environmental quality and disease status of fish • Changes occur over time (type of system) • Water quality degrades. • Fish become more crowded. • Emphasis of Health management: • Physical features of facility • Use of genetically improved fish • “SPF” stocks • Environmental control • Prophylactic/preventative therapy • Feed quality and quantity

  5. REM: Stress • Adverse situation that affects the well-being of individual animals...

  6. Stress related disease • Environmental associated • Wild fish are in equilibrium with there pathogens. • Captive fish are much more effected by changes in temp. or water quality due to excessive crowding, handling, etc. • Microbial diseases • Decreased resistance to pathogens • Endemic pathogens

  7. Location of site • Soil, water and fish species must be compatible • Chose site properly • Pond aquaculture • Soil characteristics • Drainage Good, bad, or just ugly??

  8. Avoiding exposure • Best method to control infectious disease • Water is effective at delivering pathogens to fish (endemic) • Don’t feed contaminated feed.

  9. Avoiding exposure • REM: U.S.: Title 50? • What about other countries? • Do they have regulations? • Quarantine • Isolate fish 2 weeks + • Eradication of Stocks • Last resort! • Is it worth it? • Can you manage around problem?

  10. Avoiding exposure (cont.) • Example: • VHSV (or Egtved) Washington (1989) • Destroyed adults that were found to have viru • Destroyed juveniles • Great lakes (lake trout) Epidermal epitheliotropic disease (herpesvirus) • Destroyed fish and disinfected contaminated facilities • Appears to have worked • BKD (Wyoming) (1990) • Destruction of RBT, lake, CTT, and BrT brood stock • Based on highly sensitive detection technique (ELISA) • No evidence for disease • “Was the cost and consequence greater than the value of what was saved?”

  11. Exposing Dose • To be sick, fish must be exposed! If no exposure, liklihood of disease greatly reduced. • Introduction of disease agent = potential trouble as we disscussed last time. • Once pathogen load increases (due to poor resistance) = DISEASE • Exposing dosage data usually confined to toxicity studies.

  12. Extent of contact • Infection vs Disease? • Facultative – may live under many conditions • Obligate – require host to complete life cycle • Viruses, some bacteria, and few parasites • Route of transmission • Oral • External • Vertical • Horizontal • Direct exposure • Carriers

  13. Protection through segregation • Young fish/newly hatched fish • Only innate immunity • Highly suceptable to stress and water quality issues • May need medicated feed. • Fingerlings • Immunity increasing • survive poor water quality for short duration. • Growout • Immune system well established. • Approaching market/release size • Very resistant to disease • Can survive in poorest water quality

  14. Addition of new fish • Should take needed precautions when adding new fish to existing stocks...duh!! • Home aquaria or large facilities • Again...Quarantine!

  15. Breeding and Culling • Important in the development of domesticated stocks that perform well • Improve by selecting for desired traits • disease resistance • fast growth • tolerance of stressors • Future possibilities (genetic engineering) • Gene manipulation • Hybridization/transgenic

  16. REM: EPC • Eradication: Kill ‘em all!! • Prevention: Kill what kill’s ‘em!! • Control: Reduction of problem to an economically/biologically manageable level • Do all you can. • Be prepared for the worst. • Sometimes fish just get sick!!

  17. Anticipating problems • Plan ahead. • Good health records for each pond. • Good observations. • Good feed. • Water quality/quantity. • Stay on top of things!!

  18. Fish Health Monitoring • Early diagnosis • Know what “normal” is! • Know what treatments are available. (and how to utilize them.) • Know what abnormal is. • Remain proactive.

  19. Question? You are in charge of fish health monitoring at an aquaculture facility. During morning rounds you notice that a first use pond containing RBT (50g/fish) is having some problems. Fish appear lethargic, and some dark fish are observed. • What possible problems may be causing this? • How would you narrow the possibilities down? • You suspect the problem to be disease related, what would you do?

More Related