Spread spectrum communications
Download
1 / 14

Spread Spectrum Communications - PowerPoint PPT Presentation


  • 248 Views
  • Uploaded on

Spread Spectrum Communications. Course Syllabus Spring 2007. Course Syllabus. General Information Credits : 3 Credit Hours Textbook : D. Torrieri, “ Principles of Spread-Spectrum Communication Systems ,” Springer, 2005. (ISBN 0-387-22782-2) Recommended Reading :

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Spread Spectrum Communications' - Sophia


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Spread spectrum communications

Spread Spectrum Communications

Course Syllabus

Spring 2007


Course syllabus
Course Syllabus

  • General Information

    • Credits: 3 Credit Hours

    • Textbook:

      • D. Torrieri, “Principles of Spread-Spectrum Communication Systems,” Springer, 2005. (ISBN 0-387-22782-2)

    • Recommended Reading:

      • R. L. Peterson, R. E. Ziemer, and D. E. Borth,“Introduction to Spread Spectrum Communications,” Prentice Hall, 1995. (ISBN 0-02-431623-7)

      • V. P. Ipatov, “ Spread Spectrum and CDMA:principles and applications,” Wiley, 2005.

      • R. C. Dixon, “Spread Spectrum Systems with Commercial Applications,” 3rd Ed., John Wiley & Sons, Inc., 1994

      • S. Verdu, Multiuser Detection, Cambridge University Press, 1998. (ISBN 0-521-59373-5)

      • A. J. Viterbi, CDMA : Principles of Spread Spectrum Communication, Addison-Wesley, 1995.


  • Prerequisite:

    • Signal theory (probability, random variables, stochastic processes)

    • Digital communications

  • Class Hours: Wednesdays 18: 30 to 19: 30

  • Office Hours: Thursdays 18:00 to 21:00

  • Instructor: Dr. Chen Tso-Cho (陳作舟)

  • Telephone: 0922-246688

  • E- mail: [email protected]


Course description
Course Description

  • This course teaches the fundamentals of digital communication that are the foundation for many of the techniques employed in spread spectrum communications.

  • These include spreading sequence, direct sequence (DS) and frequency hopping (FH) spread spectrum, performance of spread-spectrum systems in jamming environments and capacity calculation for CDMA systems.

  • Students gain an overview of wireless architecture, spread spectrum systems, code synchronization, design of optimum receivers, CDMA theories, calculation of theoretical capacity of CDMA system, effects of interference in CDMA, and 3G wireless systems using CDMA technologies.


Course topics
Course Topics

  • Introduction to spread-spectrum communications

    • Basic digital communications concepts

    • Direct sequence and frequency hopping spread spectrum

  • Direct sequence systems

  • Frequency hopping systems

  • Diversity reception in spread-spectrum

  • Spreading code acquisition and tracking

  • Code Division Multiple Access

  • Multiuser Detection

  • 3G Mobile Communication System-WCDMA

  • Detection of spread-spectrum signals


Grading
Grading

  • Homework and Class Attendance 30%

  • Midterm 30%

  • Final Project 40%


Project
Project

  • The course project is an individual simulation study of systems and algorithms related to the material presented in class.

  • You can conduct your simulation study based on one (or more) of the papers in the list below.

  • Alternatively you can select your own reference papers, provided that we mutually agree on the selection.

  • You have to understand the material in the paper and write your own MATLAB (or C, C++, Fortran, etc) programs to implement and test the algorithms described in the paper.


  • Create your own test scenarios, don't just repeat what are done in the paper.

  • Feel free to modifiy, improve, or extend the original alogrithms and scenarios described in the paper.

  • A ground-breaking research topic is excellent, but not needed. However, you are expected to show a substantial effort in your project.


  • Goal done in the paper.

    • I believe the best way to learn a subject is by working on a project.

    • First, you have to select a topic. In the process, you have to review the class material. You have to learn how to search and select useful information from research papers.

    • The next step is to develop your ideas and work them out. This step helps you to review, consolidate, and practice the knowledge you learn in class.

    • The final step is to write a report on your findings. To do so, you need to organize your ideas and results in a clear and logical manner so that they can be understood by the readers of your report.

    • I believe a well-written report is as important as a good idea. There is no point in doing research if no other person can understand and use the result.


References
References done in the paper.

  • R. Lupas and S. Verdu, ``Linear Multiuser Detectors for Synchronous Code-Division Multiple-Access Channels,'' IEEE Trans. Inform. Theory, vol. 35, pp. 123-136, Jan. 1989.

  • P. B. Rapajic, and B. S. Vucetic, ``Adaptive Receiver Structures for Asynchronous CDMA Systems,'' IEEE J. Select. Area Commun., vol. 12, no. 4, pp. 685-697, May 1994.

  • U. Madhow and M. Honig, ``MMSE Interference Suppression for Direct-Sequence Spread-Spectrum CDMA,'' IEEE Trans. Commun., vol. 42, pp. 3178-3188, Dec. 1994.

  • S. L. Miller, ``An Adaptive Direct-Sequence Code-Division Multiple-Access Receiver for Multiuser Interference Rejection,'' IEEE Trans. Commun., vol. 43, pp. 1746-1754, Feb./Mar./Apr. 1995.

  • M. Honig, U. Madhow, and S. Verdu, ``Blind Adaptive Multiuser Detection,'' IEEE Trans. Inform. Theory, vol. 41, pp. 944-960, Jul. 1995.

  • A. F. Naguib, A. Paulraj, and T. Kailath, ``Capacity Improvement with Base-Station Antenna Array in Cellular CDMA,'' IEEE Trans. Veh. Technol., vol. 43, pp. 691-698, Aug. 1994.

  • A. Monk, M. Davis, L. B. Milstein, and C. W. Helstrom, ``A Noise-Whitening Approach to Multiple-Access Noise Rejection---Part I: Theory and Background,'' IEEE J. Select. Area Commun., vol. 12, no. 5, pp. 817-827, June 1994.


  • A. J. Viterbi, ``Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels,'' IEEE J. Select. Area Commun., vol. 8, no. 4, pp. 641-649, May 1990.

  • X. Wang and H. V. Poor, ``Blind multiuser detection: a subspace approach,'' IEEE Trans. Inform. Theory, vol. 44, pp. 677-690, Mar. 1998.

  • X. Wang and H. V. Poor, ``Blind equalization and multiuser detection in dispersive CDMA channels,'' IEEE Trans. Commun., vol. 46, pp. 91-103, Jan. 1998

  • S. Kondo, and L. B. Milstein, ``Performance of Multicarrier DS CDMA Systems,'' IEEE Trans. Commun., vol. 44, pp. 238-246, Feb. 1996.

  • M. K. Varanasi and B. Aazhang, `` Multistage detection in asynchronous code-division multiple-access communications,'' IEEE Trans. Commun., vol. 38, no. 4, pp. 509-519, Apr. 1990.

  • R. D. Yates, ``A framework for uplink power control in cellular radio systems,'' IEEE Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1341-1347, Sep. 1995.

  • S. Ulukus and R. Yates, ``Adaptive power control and MMSE interference suppression,'' Baltzer/ACM Wireless Networks vol. 4, no. 6, pp. 489-496, 1998.


  • Andrew S. Park, R. Michael Buehrer, Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels,'' and Brian D. Woerner, “Throughput Performance of an FHMA System with Variable Rate Coding,” IEEE Trans. on Communication, Vol. 46, No. 4, April 1998.

  • John H. Gass, Jr., and Michael B. Pursley, “A Comparison of Slow-Frequency-Hop and Direct-Sequence Spread-Spectrum Communications Over Frequency-Selective Fading Channels,” IEEE Trans. on Communication, Vol. 47, No. 5, May 1999, pp.732-741.

  • Mo-Han Fong, K. Bhargava, and Qiang Wang, “Concatenated Orthogonal/PN Spreading Sequences and Their Application to Cellular DS-CDMA Systems with Integrated Traffic,” IEEE Journal on Selected Areas in communications, Vol. 14, No. 3, April 1990, pp. 547-557.

  • Stefano Buzzi, Marco Lops, and Antonia M. Tulino, “Time-Varying Narrow-Band Interference Rejection in Asynchronous Multiuser DS/CDMA Systems over Frequency-Selective Fading Channels,” IEEE Trans. on Communication, Vol. 47, No. 10, Oct. 1999, pp. 1523-1536.

  • Chin-Chun Lee,and Raymond Steele, “Effect of Soft and Softer Handoffs on CDMA System Capacity,” IEEE Tran. on Vehicular Technology, Vol. 47, No. 3, Aug. 1998, pp. 830-841.

  • Dong G. Jeong, Gyu Kim, and Dongwoo Kim, “Capacity Analysis of Spectrally Overlaid Multiband CDMA Mobile Networks,” IEEE Tran. on Vehicular Technology Vol. 47, No. 3, Aug. 1998, pp. 798-807.


  • Seng-Woon Chen, William Panton, and Robert Gilmore, “Effects of Nonlinear Distortion on CDMA Communication Systems,” IEEE Trans. on Microwave Theory and Techniques, Vol. 44, No. 12,Dec. 1996, pp.2743-2750.

  • Andrew L. C. Hui and Khaled Ben Letaief, “Successive Interference Cancellation for Multiuser Asynchronous DS/CDMA Detectors in Multipath Fading Links,” IEEE Trans. on Communication, Vol. 46, No. 3, Mar. 1998, pp.384-391.


  • 期末報告評量 “Effects of Nonlinear Distortion on CDMA Communication Systems,” IEEE Trans. on Microwave Theory and Techniques, Vol. 44, No. 12,Dec. 1996, pp.2743-2750.

    • 主題內容(與課程的適切性) 10%

    • 背景內容(含文獻引用與瞭解) 10%

    • 研究方法(演算法或理論推導) 30%

    • 模擬與結果 20%

    • 報告撰寫 20%

    • 簡報 10%


ad