Supplying and Using Energy
Download
1 / 73

ttp://nsidc.org/data/iceshelves_images/ - PowerPoint PPT Presentation


  • 234 Views
  • Updated On :

Supplying and Using Energy (VCE Unit 4) Doug MacFarlane School of Chemistry Monash University. www.electromaterials.edu.au. 31 Jan 2002. 5 Mar 2002. 4 Jan 2003. 10 Feb 2003. http://nsidc.org/data/iceshelves_images/. Science (2007). But how Really Serious is all this……. Larsen B.

Related searches for ttp://nsidc.org/data/iceshelves_images/

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'ttp://nsidc.org/data/iceshelves_images/' - RoyLauris


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Slide1 l.jpg

Supplying and Using Energy

(VCE Unit 4)

Doug MacFarlane

School of Chemistry

Monash University

www.electromaterials.edu.au







Slide7 l.jpg

Science (2007)

But how Really Serious is all this……..

Larsen B


Slide8 l.jpg

Overview

Energy and Energy Sources

- bio fuels

- fuel cells

- hydrogen

- solar cells

- batteries

Practical/Project Possibilities

Discussion


Slide9 l.jpg

Program 1

Electromaterials

Synthesis and Properties

Program 2

Energy Conversion

Program 3

Energy Storage

Program 4

Bionics


Slide10 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Bio-carbon

fuels


Slide11 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Bio-carbon

fuels

Heating


Slide12 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Bio-carbon

fuels

Land use, Food supply, Water, Biodiversity

Heating


Slide13 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Geological

Carbon fuels

(coal, gas, oil)

Bio-carbon

fuels

Land use, Food supply, Water, Biodiversity

Heating


Slide14 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Bio-carbon

fuels

Land use, Food supply, Water, Biodiversity

Heating


Slide15 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Bio-carbon

fuels

CO2 release

to atmosphere

Land use, Food supply, Water, Biodiversity

Heating


Slide16 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Bio-carbon

fuels

CO2 release

to atmosphere

Land use, Food supply, Water, Biodiversity

Heating


Slide17 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Bio-carbon

fuels

CO2 release

to atmosphere

Land use, Food supply, Water, Biodiversity

Heating


Slide18 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Bio-carbon

fuels

CO2 release

to atmosphere

Land use, Food supply, Water, Biodiversity

Heating


Slide19 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Nuclear

Bio-carbon

fuels

CO2 release

to atmosphere

Land use, Food supply, Water, Biodiversity

Heating


Slide20 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Nuclear

Bio-carbon

fuels

CO2 release

to atmosphere

Land use, Food supply, Water, Biodiversity

Heating


Slide21 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(coal, gas, oil)

Nuclear

Bio-carbon

fuels

CO2 release

to atmosphere

Long lived waste

Uranium supplies

Land use, Food supply, Water, Biodiversity

Heating


Slide22 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(gas, oil)

Nuclear

Bio-carbon

fuels

CO2 release

to atmosphere

Long lived waste

Uranium supplies

Land use, Food supply, Water, Biodiversity

Heating


Slide23 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(gas, oil)

Nuclear

Bio-carbon

fuels

Solar

CO2 release

to atmosphere

Long lived waste

Uranium supplies

Land use, Food supply, Water, Biodiversity

Heating


Slide24 l.jpg

Energy Sources - Sustainability

Unit 4 Area of Study 2 point 1

Source Use Issues

Hydro,

Wind, Tide

Land use

Electricity

Generation

Automotive

Geological

Carbon fuels

(gas, oil)

Nuclear

Bio-carbon

fuels

Solar

CO2 release

to atmosphere

Long lived waste

Uranium supplies

Land use, Food supply, Water, Biodiversity

Heating


Slide25 l.jpg

Brown Coal - The Joy and the Sorrow!

  • • Victoria has enormous resources

  • of Brown Coal

  • • Brown coal has a high water content

  • => significant quantity of energy used

  • in evaporating the water

  • very high CO2 emission

  • 1kg CO2 per kWh of electricity

Coal mining in the La Trobe Valley


Slide26 l.jpg

Practical:

Fermentation and

distillation of alcohol

BIOCHEMICAL FUELS…..Fuel from plants

VCE Unit 3, Area of Study 2 point 6: biochemical fuels including fermentation of sugars to produce ethanol

Four main approaches:

- fire-wood!

- ethanol fermented from sugar/corn

syrup

- food oils processed into biodiesel

- wood pulp processed into petrol


Slide27 l.jpg

Green Chemistry

  • Chemicals and chemical processes

  • ………which are benign by design

  • Consider all inputs and outputs in a process

  • Account for whole of life of a chemical

  • (eg Estrogen pollution)

  • Develop new approaches

  • • chemistry in the microwave

  • • new solvents

www.chem.monash.edu.au/green-chem/

www.naturodoc.com/library/hormones/estrogen_pollution.htm


Slide28 l.jpg

Fermentation and Distillation of Alcohol

C6H12O6(aq) 2CH3CH2OH(aq) + 2CO2(g)

Yeast

Note loss of 2 carbons out 6

Distill

CH3CH2OH(l)

http://www.csrethanol.com.au/Default.asp

Ethanol typically blended with petrol at 10% level


Slide29 l.jpg

Bio-diesel

CH3OH

CH3O

Ester (biodiesel)

  • - Bio-diesel typically blended with hydrocarbon diesel as 5 or 10% mix

  • But:

  • rain forest clearing in Indonesia for oil crops contributing to Indonesia becoming 3rd largest producer of CO2

  • - Nov 2007: UN recommending a moratorium on further development

  • of biodiesel activity because of impact on food supply

  • -


Slide30 l.jpg

Fuel Cells

Unit 4 Area of Study 2 point 6

e-

Cathode

Anode

(1/2)O2 + 2e- +2H+

---> H2O

H2 --->

2H+ + 2e-

E0(H+/H2) = 0 V

E0(O2/H2O)=1.2V

=> Ecell ~ 1.2 V

H+



Slide32 l.jpg

The Polymer Electrolyte Fuel Cell

NAFION membrane: -(-CF2-CF-)x-(-CF2CF2-)-

CF2CF2SO3H

http://education.lanl.gov/resources/h2/education.html


Slide33 l.jpg

The Polymer Electrolyte Fuel Cell

Where do we

get the

hydrogen

from?

NAFION membrane: -(-CF2-CF-)x-(-CF2CF2-)-

CF2CF2SO3H

http://education.lanl.gov/resources/h2/education.html


Slide34 l.jpg

Practical:

Electrolysis of water

Hydrogen - The Perfect Fuel!

2H2 + O2 = 2H2O

  • Burns smoothly

  • No carbon dioxide produced

  • But:

  • where do we get it from?

  • some available from oil wells

  • …..not enough

  • possible to make from methane

  • …. What’s the point!?

  • Electrolysis of water is best option

  • …. if we have a source of electricity!

  • ….or solar electrolysis?


Slide35 l.jpg

I

Solar Water Electrolysis

High Potential

Energy Electron

E(vs SCE)

pH = 0

-0.25

+0.95

λ(solar) = 400 - 800nm

E(photon) = 3.0 - 1.5 eV

e-

H+/H2

Band Gap

Excitation

H2O/O2

h+


Slide36 l.jpg

Hydrogenation

Solar Fuel

Solar hydrogen

(Water splitting or

Thermochemical)

Energy content of H2 in a

Hydrogen Storage Material = 19 MJ/kg

Hydrocarbons

Biomass ---> “sugars”

Eg glucose eg. gasoline, kerosene

Energy content 15 MJ/kg Energy Content = 48 MJ/kg

Solar Hydrogen represents > 2/3rds of energy content of the fuel


An alternative microbial fuel cells l.jpg

Chaudhuri et al Nature Biotech 21 (2003) 1229-1233

An Alternative; Microbial Fuel Cells


R ferrireducens l.jpg

R. Ferrireducens is a Fe(III) reducing microorganism that exists in anoxic marine sediments

Consumes glucose in process

C6H12O6 +6H2O + 24Fe(III)----> 6CO2 +24H+ + 24Fe(II)

• In the fuel cell it can carry out this reduction with respect to (ie on) the electrode

R. Ferrireducens


The glucose bio fuel cell l.jpg
The Glucose Bio Fuel Cell

(1/2)O2 + 2e- +2H+

---> H2O

O2(aq)

Carbon

electrodes

Load

Nafion

C6H12O6 +6H2O

----> 6CO2 +24H+ + 24e-

R. Ferrireducens

Glucose(aq)

electrons


Slide40 l.jpg

• Effect of time and

replacement of medium

• Effect of various

electrodes and sugars


Slide41 l.jpg

Solar Electricity

Source NASA: Maximum solar insolation


Photo electrochemical solar cells l.jpg
Photo electrochemical solar cells

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)2

Indium/Tin Oxide


Slide43 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru dye

Tin Oxide


Slide44 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide45 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide46 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide47 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide48 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide49 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide50 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide51 l.jpg

Efficiency ≈ 10%

Load

Photon + Ru2+_-> Ru3++ e-

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide52 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide53 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide54 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide55 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide56 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide57 l.jpg

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide58 l.jpg

Efficiency ≈ 10%

Load

2e- + I3- -> 3I-

Polymer

Electrolyte

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide59 l.jpg

3I- 3I-

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I-

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide60 l.jpg

3I- 3I-

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I-

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide61 l.jpg

3I- 3I-

Efficiency ≈ 10%

Load

Polymer

Electrolyte

Ru3+ + I- -> I3- + Ru2+

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide62 l.jpg

3I- 3I-

Efficiency ≈ 10%

Load

Polymer

Electrolyte

I3-

I3-

I -

Glass

Electrolyte

+ I- / I3-

TiO2 + Ru(bpy)

Indium/Tin Oxide


Slide63 l.jpg

Electrochemical Cells

Unit 4 Area of Study 2 point 5

Li ion

Lead

acid

=> Light and small

  • Fast to charge,

  • can deliver energy quickly


Lithium cells l.jpg

e-

Lithium Cells

Li --->

Li+ + e-

Li+ + e- +LixCoO2

---> Li(1+x)CoO2

E0 = -3.0 V

E ≈ 1.2 V

Reactions shown for discharge

process Ecell ≈ 4 V

Li+


Lithium batteries l.jpg

Lithium is by far the most energy dense battery material.

Why? Li+ + e- -----> Li(s) E0 = -3.0 VCalculate gravimetric energy density:ΔG0 = nFE0 = 1 x 96500 C/mol x (-3.0 V) = - 290 kJ/molbut 1 mol Li only weighs 7 g !!=> Energy Density = 290 kJ/mol / 7 g/mol = 41 kJ/g = 41 MJ/kg

Lithium Batteries


Layered oxide cathode materials l.jpg

α-NaFeO2

A layered form of NaCl structure:

Layered Oxide Cathode Materials


Layered oxides l.jpg

Lithium materials ofthis type include: LiVO2, LiNiO2, LiCoO2 LiCrO2

Lithium ions can be reversibly intercalated, eg:LiCoO2 -----> xLi+ +Li(1-x)CoO2 + e- E ≈ 1.2 V vs hydrogen electrode

where x = 0 to 0.9. At x=0.9 nearly all the Li has been removed from the structure.

Typically only about 0.5 Li per LiCoO2 is removed

Layered Oxides


Li batteries l.jpg
Li Batteries

Standard

aprotic

electrolyte

…prone to dendrite formation

Ionic liquid electrolyte..

….no dendrites


Lithium ion cell l.jpg

e-

Li(C) --->

Li+ + e-

Li+ + e- +LixCoO2

---> Li(1+x)CoO2

Li+

Lithium Ion Cell


Ionic liquids very stable l.jpg
Ionic Liquids - Very stable

Cyclic Voltammetry on Vitreous C

Oxidation

of IL

Reduction

of IL

Window of stability

very wide


Ionic liquids very stable71 l.jpg
Ionic Liquids - Very stable

Cyclic Voltammetry on Vitreous C

Oxidation

of IL

Reduction

of IL

Water

Window of stability

very wide


Theoretical approaches l.jpg

Charge distribution in TFSA by

ab initio methods

Theoretical Approaches

Dr. Katya Izgorodina

Diffuse charge on anion

TFSA LUMO

Vibrational Modes

Izgorodina, E. I.; Forsyth, M.; MacFarlane, D. R.,

Towards a better understanding of 'delocalized charge' in ionic liquid anions.

Aust. J. Chem. 2007, 60, (1), 15-20.


Slide73 l.jpg

Discussion Time

How can we help?

www.electromaterials.edu.au


ad