Gleeble systems physical simulation technology
Download
1 / 81

Todd - PowerPoint PPT Presentation


  • 801 Views
  • Updated On :

Gleeble Systems: Physical Simulation Technology. Todd A. Bonesteel. Dynamic Systems Inc. Poestenkill, NY 12140 U.S.A. Outline. History of DSI Fundamentals of Physical Simulation Development of Gleeble Physical Simulators

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Todd' - RoyLauris


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Gleeble systems physical simulation technology l.jpg

Gleeble Systems: Physical Simulation Technology

Todd A. Bonesteel

Dynamic Systems Inc.

Poestenkill, NY 12140

U.S.A.


Outline l.jpg
Outline

  • History of DSI

  • Fundamentals of Physical Simulation

  • Development of Gleeble Physical Simulators

  • Applications of Physical Simulation Technologies to Metal Industries


History of dsi l.jpg
History of DSI

  • Gleeble developed late 1940s to Study Weld HAZ Phenomena

  • DSI Founded 1957

  • Pioneers of Physical Simulation

  • First Export - Society de France - June 1962


Fundamentals of physical simulation l.jpg
Fundamentals of Physical Simulation

  • Furnace Heating

  • Induction Heating

  • Bulk Heating





Axial thermal gradient control8 l.jpg
Axial Thermal Gradient Control

  • Steep Thermal Gradient Generation


Axial thermal gradient control9 l.jpg
Axial Thermal Gradient Control

  • Flat Thermal Gradient Generation


Gleeble specimen thermal profile l.jpg
Gleeble Specimen Thermal Profile

  • Axial Thermal Gradient Control


Gleeble specimen thermal profile11 l.jpg

60

60

Specimen size: 10mm diameter

50

50

Helium

Carbon Steel

40

40

Argon

Surface to Center Temp Difference (°C)

30

30

Carbon Steel

Vacuum

20

20

Carbon Steel

Argon

Stainless Steel

10

10

With Flexible

Thermal Sleeve

0

0

800

900

1000

1100

1200

1300

Test Temperature (°C)

Gleeble Specimen Thermal Profile

  • Radial Thermal Gradient Control


Development of gleeble thermal mechanical simulators l.jpg
Development of Gleeble Thermal Mechanical Simulators

  • Hydrawedge System

  • Hot Torsion System: HTS-50

  • Multi-Axis Deformation Simulator: MAXStrainSystem

  • HDS-V40 SimCast System


Series 3 digital control system the gleeble 3500 l.jpg

Series 3 Digital Control System:The Gleeble 3500

Since 1995


Gleeble 3500 specifications l.jpg
Gleeble 3500 Specifications

  • Max. speed: 1,000mm/s

  • Loading capacity: 10 metric tons in tension and compression

  • Max. heating rate: 10,000C/sec


Digital control system the hydrawedge system l.jpg
Digital Control System:The Hydrawedge System

Since 1990


Digital control system the hydrawedge system16 l.jpg

Mechanism of the Hydrawedge System

Digital Control System:The Hydrawedge System

Load cell

Anvils

Yoke

Stop

Jaw

transducer

Specimen loader


Digital control system the hydrawedge system17 l.jpg
Digital Control System:The Hydrawedge System

  • Separate yet Synchronized Control of Strain and Strain Rate

  • No Over-Travel at A High Speed

  • Multiple Compression at Different Values of Strain, Strain Rate and Temperature


Digital control system the hot torsion system hts l.jpg
Digital Control System:The Hot Torsion System / HTS

Since 1996


Digital control system the hot torsion system hts19 l.jpg

Typical Torsion Test Setup

Digital Control System:The Hot Torsion System / HTS

Resistance Heating Furnace

Specimn

Floating/

Fixed End

Rotation End


Digital control system the hot torsion system hts20 l.jpg
Digital Control System:The Hot Torsion System / HTS

  • Instant Speed-up: < 5msec to reach 1,000 rpm

  • Free Coupler for Minimal Strain Error during Acceleration and Free Unloading

  • Environment Control: Inert gas or vacuum

  • In-situ Quenching


Digital control system the hot torsion system hts21 l.jpg
Digital Control System:The Hot Torsion System / HTS

  • Servo Hydraulic Control System

  • Combined Torsion and Tension/Compression Control during Torsion

  • Rapid Resistance Heating and Cooling

  • Thermocouple or Pyrometer Control

  • Uniform Temp. within Gauge Length



Gleeble applications on metals handbook l.jpg
Gleeble Applications on Metals Handbook


Applications of physical simulation technologies l.jpg
Applications of Physical Simulation Technologies

  • Basic Materials Studies

  • Materials Testing

  • Metallurgical Process Simulation


Basic materials studies l.jpg
Basic Materials Studies

  • Phase Transformation / Precipitation

  • Oxidation / Decarbonization / Diffusion

  • Liquid Embrittlement

  • Constitutional Liquation

  • Crack Susceptibility

  • Liquid Metal Wetability

  • Liquid and Solid Metal Thermal Expansion / Contraction


Basic materials studies26 l.jpg
Basic Materials Studies

  • Melting /Solidification

  • Superplasticity

  • Work Hardening / Softening

  • Recrystallization / Recovery

  • Precipitation

  • Ultra-Fine Grain Materials

  • Nanometer Materials


Materials testing l.jpg
Materials Testing

  • Hot Ductility / Hot Workability / SICO

  • Uniaxial / Plane Strain Compression

  • Dynamic and Static CCT / CHT / TTT

  • Weldability / NST / NDT / BTR / RDR

  • Thermal and/or Mechanical Fatigue

  • Superplasticity / Elongation

  • Elastic Modulus / Yield Stress / UTS


Materials testing28 l.jpg
Materials Testing

  • Creep / Stress Rupture

  • Plane Strain Fracture Toughness / CTOD

  • ......


Process simulation l.jpg
Process Simulation

  • Casting / Foundry

  • Semi-Solid Processing

  • TMCP (Rolling, Forging and Extrusion)

  • Welding: HAZ cycling, Weld metal, Laser welding, Electron beam welding, Upset butt welding, Friction stir welding ...

  • Diffusion Bonding


Process simulation30 l.jpg
Process Simulation

  • Heat Treatment (Annealing, Normalizing, Quenching, Tempering, ...)

  • Strip Annealing

  • Powder Metallurgy / Sintering / HIPping

  • Synthesis (SHS)

  • ....


Con casting process simulation l.jpg
Con-Casting Process Simulation

  • Slab Casting Process Simulation


Con casting process simulation32 l.jpg
Con-Casting Process Simulation

  • Castability Map Development


Con casting process simulation33 l.jpg
Con-Casting Process Simulation

  • Castability Map Development


Con casting process simulation34 l.jpg
Con-Casting Process Simulation

  • Hot Ductility Test


Con casting process simulation35 l.jpg
Con-Casting Process Simulation

  • Castability Map Development


Con casting process simulation36 l.jpg
Con-Casting Process Simulation

  • Castability Map Development

Optimal cooling rate ( C ) for an aluminum killed steel to produce crack free billets


Uniaxial compression testing l.jpg

Graphite Foil

Specimen

ISO -T TM Anvils

Anvil Base

Anvil Base

Temp

Free Span

Schematic Setup of Isothermal Flow Stress Testing

Using the ISO - TTM Anvils

Uniaxial Compression Testing

  • ISO-T TM Anvils



Uniaxial compression testing39 l.jpg
Uniaxial Compression Testing

  • Uniform Deformation with ISO-T TM Anvils

10 mm dia. specimen after 60% reduction at 1000oC (x100)


Hot workability test technique l.jpg
Hot Workability Test Technique

  • Hot Ductility Test


Hot workability test technique41 l.jpg
Hot Workability Test Technique

  • Effect of Thermal Gradient on Material Strength




Hot workability test technique44 l.jpg
Hot Workability Test Technique

  • SICOTM Procedure

Aluminum Alloy

Austenitic Alloy

Ni-base Superalloy

10 mm dia. SICO bar


Hot workability test technique45 l.jpg
Hot Workability Test Technique

  • Critical Strain in SICO Procedure

  • 1.  2.


Hot workability test technique46 l.jpg
Hot Workability Test Technique

  • SICOTM Procedure vs. Hot Ductility Test


Thermomechanical processing l.jpg
Thermomechanical Processing

  • Optimization of Thermomechanical Processes


Thermomechanical processing48 l.jpg
Thermomechanical Processing

  • Optimization of Thermomechanical Processes


Thermomechanical processing49 l.jpg
Thermomechanical Processing

  • Optimization of Thermomechanical Processes


Weld metal crack susceptibility study l.jpg

(a) Extraction of the LBT specimen from welded assembly

(b) LBT specimen

(c) Bent LBT specimen showing area of examination

Weld Metal Crack Susceptibility Study

  • Conventional LBT Procedure


Weld metal crack susceptibility study51 l.jpg
Weld Metal Crack Susceptibility Study

  • SICOTM Specimen Cutting


Welding simulation l.jpg
Welding Simulation

  • Crack Susceptibility of Weld Metals

No cracks, 1050C, 0.41, 3/s, Bottom layer

Some cracks, 1050C, 0.41, 3/s, Top layer

Many cracks, 1050C, 0.41, 3/s, Bottom layer


Weld metal crack susceptibility study53 l.jpg

Critical Strains for Top and Bottom Layers

of Multi-pass Weld Metal

0.6

Crack from Bottom Layer

Crack from Top Layer

0.5

Critical Strains

0.4

for Bottom Layer

0.3

Hoop Strain, (ln (D/d)

Critical Strains

0.2

for Top Layer

0.1

0.0

900

950

1000

1050

1100

1150

1200

Temperature (°C)

Weld Metal Crack Susceptibility Study

  • Using SICOTM Procedure


Weld metal crack susceptibility study54 l.jpg

C

a5

a6

*

b6

b5

(5)

(4)

(6)

a5

(3)

a4

b4

b5

a6

a3

b6

b3

(1)

(2)

a1

a2

b1

b2

Weld Metal Crack Susceptibility Study

  • Micromechanism of Microfissuring


Weld metal crack susceptibility study55 l.jpg
Weld Metal Crack Susceptibility Study

  • Application of the SICOTM Procedure

Compositions (wt%) of the Four Electrodes Tested


Weld metal crack susceptibility study56 l.jpg
Weld Metal Crack Susceptibility Study

  • Nil-Strength Temperature Measurement

Nil-Strength Temperatures (oC) of Four Electrodes


Weld metal crack susceptibility study57 l.jpg

0.8

crack: 20.32Nb

no crack: 20.32.Nb

crack: 625KS

0.6

no crack: 625KS

0.4

Critical Strain, ln (D/d)

20.32Nb

0.2

625KS

0.0

1000

1100

1200

1300

Temperature (°C)

Weld Metal Crack Susceptibility Study

  • Application of the SICOTM Procedure


Weld metal crack susceptibility study58 l.jpg

Metrode: 1- 625KS, 2- NCM12 and 3- NIM721

0.5

Crack-1,

No Crack-1

Crack-2,

No Crack-2

0.4

Crack-3,

No Crack-3

NCM12

625KS

Heating rate: 150°C/s

0.3

Strain rate: 3/s

Critical Strain, ln(D/d)

0.2

NIM721

0.1

0.0

1000

1100

1200

1300

Temperature (°C)

Weld Metal Crack Susceptibility Study

  • Application of the SICOTM Procedure


Weldability test technique l.jpg
Weldability Test Technique

  • HAZ Hot Ductility Test


Weldability test technique60 l.jpg
Weldability Test Technique

  • HAZ Hot Ductility Test


Fracture criterion l.jpg

0.5

SICO Strain

Tensile Strain

0.4

0.3

Fracture Strain

0.2

0.1

0.0

900

1000

1100

1200

Temperature (°C)

Fracture Criterion

  • Strain Fracture Criterion


Fracture criterion62 l.jpg
Fracture Criterion

  • Cockcroft and Latham’s Plastic Work Fracture Criterion

  • Modified Plastic Work Fracture Criterion


Hot workability l.jpg

Comparison of Fracture Limit to Reduction of Area

8

100

7

80

6

5

60

4

R.A.

Reduction of Area (%)

Fracture Limit

Limit

40

3

60°C/mm

2

20

1

0

0

800

1000

1200

1400

Temperature (°C)

Hot Workability

  • Fracture Limit and Reduction of Area


Hot working process simulation l.jpg

Specimen Height (mm)

7

6

5

4

1000

1. Correct Strain & Strain

800

3. Correct Strain Rate

Rate with HYDRAWEDGE

but Over-traveled Strain

1

with Normal Hydraulic

600

Systems

3

Stroke Rate (mm/s)

400

2

2. Correct Strain but Incorrect

200

Strain Rate with Normal

Hydraulic Systems

0

0

1

2

3

4

5

Deformation Time (millisecond)

Hot Working Process Simulation

  • Stopping Response in High Speed Compression (Hit 2)


Hot working process simulation65 l.jpg

Specimen Height (mm)

5

5

5

4

3

2

1

1000

3. Correct Strain Rate

but Over-traveled Strain

800

with Normal Hydraulic

System

600

Start of Deformation

Stroke Rate (mm/s)

400

2. Correct Strain but Incorrect

1. Correct Strain & Strain

200

Strain Rate with Normal

Rate with HYDRAWEDGE

Hydraulic Systems

0

-2

-1

0

1

2

3

4

Deformation Time (millisecond)

Hot Working Process Simulation

  • Stopping Response in High Speed Compression (Hit 3)


Hot working process simulation66 l.jpg
Hot Working Process Simulation

  • Hydrawedge System Performance


Hot working process simulation67 l.jpg
Hot Working Process Simulation

  • Hydrawedge System Performance


Hot working process simulation68 l.jpg

-100

A Plain Carbon Steel

-80

-60

-40

True Stress(MPa)

-20

1192°C

1164°C

1220°C

0

23/s

44/s

16/s

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

True Strain

Hot Working Process Simulation

  • Three-Hit Test of Hydrawedge Application


Hot working process simulation69 l.jpg
Hot Working Process Simulation

  • Six-Pass Hot Rolling Process Simulation


Cct ttt laser welding l.jpg
CCT / TTT / Laser Welding

  • ISO-QTM Quenching Technique


Cct ttt studies l.jpg
CCT / TTT Studies

  • Effect of Deformation on Phase Transformation


Laser measurement l.jpg

Laser

Transmitter

T.C.

Moving

Load

Cell

Jaw

Vacuum Chamber

Laser

Receiver

Schematic layout of a laser system during hot tensile testing

Laser Measurement

  • Patented Laser Tracking System


Cct ttt for strip specimen l.jpg

50 mm

Strip Specimen

Quartz Rod

6 mm

13 mm

LVDT C-Gauge Dilatometry

50 mm

Strip Specimen

6 mm

22 mm

Laser Dilatometry

CCT Dilatometry Measurement for Strip Specimens

CCT / TTT for Strip Specimen

  • Isothermal Plane for CCT


Strip annealing simulation l.jpg

electric current

50mm

20mm

1-2 mm

25mm

20mm

250mm

Strip Annealing Simulation

  • Patented SISR Technique for Deep Drawing Ability Test Specimens


Strip annealing simulation75 l.jpg
Strip Annealing Simulation

  • Patented SISR Technique for Making Deep Drawing Ability Test Specimens


Strip annealing simulation76 l.jpg
Strip Annealing Simulation

  • Specimen Heating Using Patented SISR Technique


Strip annealing process simulation l.jpg
Strip Annealing Process Simulation

  • 1mm x 50mm x 200mm Strip Specimen


Strip annealing process simulation78 l.jpg
Strip Annealing Process Simulation

  • Strip Annealing Jaw System


Gleeble scrip language l.jpg
Gleeble Scrip Language

  • Pulse Quenching Techniques



Visit gleeble web page l.jpg
Visit Gleeble Web Page

W W W.GLEEBLE.COM


ad