The systems neuroscience of human memory
Download
1 / 35

THE SYSTEMS NEUROSCIENCE OF HUMAN MEMORY - PowerPoint PPT Presentation


  • 371 Views
  • Updated On :

THE SYSTEMS NEUROSCIENCE OF HUMAN MEMORY Rik Henson Overview A taxonomy of memory For each type of memory: Definition and Common tests Neuropsychological evidence Neuroimaging evidence Summary Taxonomy of Memory Memory Cohen and Squire, 1980 Declarative Non-declarative

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'THE SYSTEMS NEUROSCIENCE OF HUMAN MEMORY' - Jims


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Overview l.jpg
Overview

  • A taxonomy of memory

  • For each type of memory:

    • Definition and Common tests

    • Neuropsychological evidence

    • Neuroimaging evidence

  • Summary


Taxonomy of memory l.jpg
Taxonomy of Memory

Memory

Cohen and Squire, 1980

Declarative

Non-declarative


Taxonomy of memory4 l.jpg
Taxonomy of Memory

Memory

Cohen and Squire, 1980

Declarative

Non-declarative

  • Available to conscious retrieval

  • Can be declared (propositional)

  • Examples

    • “What did I eat for breakfast?” (episodic)

    • “What is the capital of Spain?” (semantic)

    • “What did I just say?” (working)

  • Experience-induced change in behaviour

  • Cannot be declared (procedural)

  • Examples

    • Subliminal advertising? (priming)

    • How to ride a bicycle (skills)

    • Phobias (conditioning)


Taxonomy of memory5 l.jpg
Taxonomy of Memory

Memory

Declarative

Non-declarative

Episodic

Semantic

Working


Taxonomy of memory6 l.jpg
Taxonomy of Memory

Memory

Declarative

Non-declarative

Episodic

Semantic

Working


Episodic memory l.jpg
Episodic Memory

  • Memory for personally experienced events that occurred in particular place at a specific time (defined by Tulving, 1972)

  • Contextual, spatiotemporal, autobiographical, “remembering”

  • “Direct” memory tests:

    Encoding Retrieval

    Free recall CAT ?

    DOG ?

    Cued recall CAT – DOG EAGLE- ?

    EAGLE – NEST CAT- ?

    Recognition CAT CAT 

    DOG SUN X

    Source Memory CAT CAT bold

    DOG DOG italics


Episodic memory8 l.jpg

PATIENTS

CONTROLS

Copy

Delayed

Recall

(15 mins)

Rempel-Clower et al., 1996

Episodic Memory


Episodic memory neuropsychology l.jpg

Anterograde

Amnesia

Retrograde

Amnesia

Episodic

memories

time

Trauma

“Ribot” gradient

Episodic Memory - Neuropsychology

  • Organic Amnesia

  • Intact: semantic memory (e.g, language) working memory (e.g, <5 mins) nondeclarative memory

Hippocampal / MTL memories ‘consolidated’ into neocortex over time, and become hippocampal-independent (Marr 1971; Alvarez & Squire, 1995)


Episodic memory neuropsychology10 l.jpg
Episodic Memory - Neuropsychology

• Large lesions of bilateral Hippocampi, Amygdalae, and Rhinal Cortex produce severe antero- and retro-grade amnesia, eg, HM (Scoville & Milner, 1957)

• Circumscribed lesions of CA1 of Hippocampus produce significant anterograde amnesia (Zola-Morgan et al 1986)

• Korsakoff’s Patients with diffuse damage to Diencephalon, Medial Thalamus, Mammillary Nuclei show varied amnesia (Press et al., 1989)

• Alzheimer’s patients show early signs of amnesia, with first lesions in Medial Temporal Lobe (Hyman et al 1984)

• Frontal Patients show confabulation (Burgess & Shallice, 1996), impaired source memory (Janowsky et al., 1989) and interference (Shimamura et al., 1995)


Episodic memory neuroimaging l.jpg
Episodic Memory - Neuroimaging

  • • MTL activations during episodic encoding (Tulving et al 1996) and retrieval (Schacter et al. 1996)

  • Anterior-Posterior dissociation? (Lepage et al. 1998; Schacter et al. 1999)

  • • Left Frontal during Encoding (Shallice et al., 1994), right during Retrieval

  • “HERA: Hemispheric Encoding Retrieval Asymmetry” (Tulving et al., 1994)

  • • Posterior cingulate / Precuneus (Fletcher et al., 1996)

  • • Left lateral inferior parietal cortex (Henson et al., 1999)

  • Network of Frontal - Medial Temporal – Posterior areas all involved:

  • Frontal areas control encoding and retrieval of memories?

  • Posterior association areas store components of memories?

  • Medial Temporal regions (temporarily) bind different components?

  • Finer spatial resolution (fMRI) beginning to dissociate MTL regions, eg Hippocampus / Perirhinal for “Recollection / familiarity”? (Aggleton & Brown, 1999)


Taxonomy of memory12 l.jpg
Taxonomy of Memory

Memory

Declarative

Non-declarative

Episodic

Semantic

Working


Semantic memory l.jpg

Pyramid and Palm Tree Test

(Howard & Patterson 1992)

Semantic Memory

  • Memory for facts, general knowledge, word meanings

  • Acontextual: Independent of where or when the information was encoded

  • Common Tests:

    • Object Naming e.g. “What is this?”

  • Semantic Judgements

  • “Which bottom picture goes best with the top one?”

  • Category Fluency

  • “Name as many dog breeds as possible in 1 minute”

  • German Shepard, golden retriever, . . .


Semantic memory neuropsychology l.jpg
Semantic Memory - Neuropsychology

  • • Modality-specific visual Agnosia after Left Temporal damage (Warrington, 1975)

  • • Category-specific, amodal Agnosia following Left Medial/Middle Temporal damage, eg, living vs. nonliving (Warrington & Shallice, 1984)

  • category effects reflect visual vs functional information?

  • • Temporal Pole lesions cause deficits in person-naming; Left Middle Inferior in animal-naming and Left Posterior Inferior in tool-naming (Damasio et al 1996)

  • • Semantic Dementia (SD) following anterior/inferior Temporal atrophy, with reverse Ribot gradients (Graham et al., 2000)

  • SD patients demonstrate graded deterioration of knowledge (Hodges et al., 1992)


Semantic memory neuroimaging l.jpg

McClelland and Rogers, 2003

Semantic Memory - Neuroimaging

• Common activation in Left Inferior Frontal, Inferior Temporal, Angular gyrus and Temporal pole for semantic judgments to words and pictures (Vandenberghe et al 1996)

• Left Inferior Temporal activations for animal and tool naming, Temporal Pole for people naming (Damasio et al., 1996)

• Left Inferior Temporal activation for category- versus letter-fluency (Mummery et al 1996)

• Left Middle Temporal and Premotor activations for tool vs animal naming, Left Middle Occipital for animal vs tool naming (Martin et al 1996)

Distributed representations, with activations reflecting object’s interaction with world? E.g., tool naming activates motor regions


Episodic vs semantic debate l.jpg
Episodic vs Semantic debate

• Are episodic/semantic memory just a continuum? (Watkins, 1974)

• Does Global Anterograde Amnesia exist?

Inability to acquire new semantic memories (Gabrieli et al, 1998)...

...yet intact development of semantic memory despite hippocampal damage (Vargha-Khadem et al. 1998)

Hippocampus proper underlies true episodic memory?

Additional Medial Temporal areas underlie anterograde semantic memory impairment?


Taxonomy of memory17 l.jpg
Taxonomy of Memory

Memory

Declarative

Non-declarative

Episodic

Semantic

Working


Working memory l.jpg

Corsi Block span

Working Memory

  • The ability to hold information “on-line” for current task (e.g. for comprehension, planning, problem solving, Baddeley 1992)

  • Short-term memory (cf. long-term episodic / semantic memory)

    • Verbal vs Visuospatial Maintenance vs Manipulation

    • Spatial vs Object Storage vs Rehearsal

  • Common Tests

    • Memory Span (maintenance)

    • Digit span “Repeat back: 8,5,3,2,7,9”

  • (Sternberg) probe task (maintenance)

  • N-back task (manipulation)

  • . . . $ % ^ ! * & * +


Working memory neuropsychology l.jpg
Working Memory - Neuropsychology

• Auditory-Verbal maintenance deficit following Left Supramarginal / Inferior Parietal lesions, eg KF (Warrington & Shallice, 1969)

• Visual-spatial maintenance deficit following Right Inferior Parietal lesion, eg ELD (Hanley et al 1991)

• Frontal patients impaired on manipulating information in Working Memory on tasks such as card sorting (Milner, 1963) and selection-without-repetition (Petrides & Milner, 1982)

• Age-related Working Memory deficits following frontal-striatal decline (Gabrieli, 1996)

Modality-specific, passive stores in posterior parietal/temporal cortex Common executive processes in frontal cortex


Working memory neuroimaging l.jpg
Working Memory - Neuroimaging

• Left Inferior Parietal activation during verbal storage; Left Inferior Frontal and Premotor activation during verbal rehearsal (Paulesu et al. 1993)

• Right Inferior Parietal, Inferior Frontal, Anterior Occipital, and Premotor Cortex activated during spatial maintenance (Jonides et al. 1993)

• Left inferior temporal and inferior parietal activated when object compared to spatial maintenance (Smith et al. 1995)

• Dorsolateral Frontal Cortex activated in N-back task when manipulation required by N>1 (Cohen et al 1997), for both verbal and spatial material (Owen et al 1998)

Ventrolateral (Inferior) Frontal Cortex involved in maintaining information on-line in current form

Dorsolateral Frontal Cortex involved in manipulating information into new forms (Owen 1997; Postle & D’Esposito, 1999)


Taxonomy of memory21 l.jpg
Taxonomy of Memory

Memory

Declarative

Non-declarative

Episodic

Semantic

Working

Priming

Procedural

Conditioning


Taxonomy of memory22 l.jpg
Taxonomy of Memory

Memory

Declarative

Non-declarative

Episodic

Semantic

Working

Priming

Procedural

Conditioning


Slide23 l.jpg

Priming

Perceptual Priming

(Gollin Figures)

Warrington & Weiskrantz, 1970

  • A change in speed, accuracy or bias of processing a stimulus owing to prior exposure to that stimulus

  • Perceptual vs Conceptual

  • Example “Indirect” Memory Tests:

    Perceptual Identification – Gollin Figures ->

  • Stem/Fragment Completion

  • (SMILE) SMI_ _

  • S_ _ L _

  • Word Association

  • (ROSE) FLOWER - ?

  • Speeded Decisions

  • (APPLE) Concrete/Abstract?


  • Slide24 l.jpg

    Priming - Neuropsychology

    • Amnesics with Medial Temporal damage show intact Perceptual Priming (Warrington & Weiskrantz 1970) and intact Conceptual Priming (Graf et al 1985)

    • Huntington’s patients with Basal Ganglia damage show intact priming (Heindel et al 1989)

    • Alzheimer’s patients with diffuse Temporal Lobe damage show intact perceptual priming but impaired conceptual priming (Keane et al 1995)

    • Patients with right occipital lesions show no perceptual priming, but intact conceptual priming (Gabrieli et al 1995)


    Slide25 l.jpg

    Priming - Neuroimaging

    • Reduced activity in bilateral occipito-temporal regions in word-stem completion (Buckner et al. 1995), independent of explicit memory (Schott et al, 2005)

    • Reduced activity in left frontal cortex in word-association (Blaxton et al 1996)

    • Subliminal priming “right thru” to motor cortex (Dehaene et al, 2001); though issues of stimulus vs response priming (Dobbins et al, 2004)

      Left frontal cortex involved in conceptual/semantic priming

      Occipito-temporal cortex involved in visual perceptual priming

      Priming deactivations localised in same areas that performed initial processing (Schacter & Buckner, 1998)

      Deactivations reflect less neural activity (lowered thresholds, synaptic change, residual activation)? Priming-related increases? (Henson, 2003)


    Taxonomy of memory26 l.jpg
    Taxonomy of Memory

    Memory

    Declarative

    Non-declarative

    Episodic

    Semantic

    Working

    Priming

    Procedural

    Conditioning


    Procedural memory l.jpg

    Serial Reaction Task

    (e.g. Hazeltine et al., 1997)

    Rotary–Pursuit

    (e.g. Gabrieli et al., 1997)

    Mirror Tracing

    (e.g. Corkin, 1968)

    Procedural Memory

    • Skill learning (e.g. riding a bicycle)

    • Requires multiple trials

    • Indexed by improved accuracy or RTs


    Slide28 l.jpg

    Procedural - Neuropsychology

    • Amnesic patients show intact:

      • Rotary Pursuit (Corkin 1968)

      • Serial Reaction Task (Nissen & Bullemer 1987)

    • Alzheimer’s patients show intact:

      • Rotary Pursuit (Gabrieli et al 1993)

      • Mirror Tracing (Heindel et al 1989)

    • Parkinson’s patients impaired on:

      • Rotary Pursuit (Heindel et al 1989)

      • Serial Reaction Task (Ferraro et al 1993)

    • Huntington’s patients impaired on:

      • Rotary Pursuit (Gabrieli et al 1997)

      • Serial Reaction Task (Willingham & Koroshetz 1993)

        but not:

      • Mirror Tracing (Gabrieli et al 1997)

    • Cerebellar lesions impair Mirror Tracing (Sanes et al 1990)


    Slide29 l.jpg

    Procedural - Neuroimaging

    • Rotary Pursuit learning correlates with activity in Primary and Secondary Motor Cortex (Grafton et al 1992)

    • Serial Reaction Task correlates with activity in Primary and Secondary Motor Cortex, and Basal Ganglia (Hazeltine et al 1997)

    • Two hypotheses:

      1. Learning repetitive sequence involves Basal Ganglia-Thalamic-Motor Cortical loop

      Learning new visual-motor mappings involves Cerebellar-Motor Cortical loop

      2. Open-loop learning (minimal feedback): Basal Ganglia-Thalamic-Motor Cortical loop

      Closed-loop learning (continual feedback): Cerebellar-Motor Cortical loop

    • Rotary Pursuit and Serial Reaction Task involve open-loop motor learning with little visual feedback (impaired by Basal Ganglia lesions)

    • Mirror Tracing involves much visual feedback (impaired by Cerebellar lesions)

      Need to examine nonvisual feedback


    Taxonomy of memory30 l.jpg
    Taxonomy of Memory

    Memory

    Declarative

    Non-declarative

    Episodic

    Semantic

    Working

    Priming

    Procedural

    Conditioning


    Classical conditioning l.jpg

    CS

    US

    CS

    US

    Classical Conditioning

    • Changes in response (R) to conditioned stimulus (CS) after repeated conditioned – unconditioned stimulus (US) pairing

    • Example:

      Existing: e.g. air puff to eye (US) – blink reflex (R)

      Training: e.g. tone in ear (CS) – air puff to eye (US)

      Result: tone in ear (CS) – blink reflex (R)

      Delay Conditioning: US starts after a CS but they co-occur

    • Trace Conditioning: US starts after CS but they do NOT co-occur

    • Fear Conditioning: CS is neutral (e.g. a light), US is aversive (e.g. shock)

    • R is behavioural/physiological (e.g. Galvanic skin response)


    Slide32 l.jpg

    Conditioning - Neuropsychology

    • Delay conditioning (eye-blink):

      Abolished with Cerebellar lesions (Daum et al 1993)

      Abolished in Alzheimer’s Disease: diffuse damage? (Woodruff-Pak et al 1990)

      Impaired in Korsakoff’s amnesics: diffuse damage (McGlinchey-Berroth et al 1995)

      Intact despite Basal-Ganglia lesions in Huntington’s (Woodruff-Pak & Papka 1996)

      Intact in Medial-Temporal amnesics (Gabrieli et al 1995b; Clark & Squire, 1998)

    • Trace conditioning:

      Impaired in Medial-Temporal amnesics (McGlinchey-Berroth et al 1997)

    • Fear conditioning:

      Impaired following amygdala resection, despite intact declarative memory for contingency (LeBar et al 1995)

      Intact in amnesics despite impaired declarative memory for contingency (Bechara et al 1995)


    Slide33 l.jpg

    Conditioning - Neuroimaging

    • Cerebellar activity correlated with CR during Delay Conditioning (Logan & Grafton 1995)

    • Hippocampus (and amygdala) shows transient involvement in Fear Trace Conditioning (Buechel et al., 1999)

    • Amygdala activity correlates with CS during Fear conditioning (Morris et al 1998)

      Cerebellum implicated in delay conditioning

      Amygdala implicated in fear conditioning

      Hippocampus may be involved in trace conditioning (development of declarative memory for contingency?)

      Future research may benefit from analyses of effective connectivity (Buechel et al 1998)


    Taxonomy of memory34 l.jpg

    Lateral Frontal

    Parietal and occipital

    Many cortical

    regions…

    Lateral

    Temporal /

    Frontal lobes

    Basal Ganglia

    Cerebellum

    Motor cortex

    Medial temporal

    Diencephalon

    Mammillary bodies

    Frontal lobe

    Cerebellum/

    Amygdala

    (MTL?)

    Taxonomy of Memory

    Memory

    Declarative

    Non-declarative

    Episodic

    Semantic

    Working

    Priming

    Procedural

    Conditioning

    What did I have for breakfast?

    What is the capital of France?

    What did I just say?

    Facilitated processing

    How to ride a bicycle

    Reflex response to new stimuli


    Slide35 l.jpg

    References

    Baddeley (1992) Science, 255, 556-559

    Bechara et al (1995). Science, 269, 1115-1118

    Blaxton et al (1996) Can. J. Exp. Psych., 50, 42-56

    Buckner et al (1995) J. Neurosci., 15, 12-29

    Buechel et al. (1999) J. Neurosci., 19, 10869-10876

    Burgess & Shallice (1986) Memory, 4, 359-441

    Clark & Squire (1998). Science, 280, 77-81.

    Cohen & Squire (1980), Science, 210, 207-210

    Corkin (1968) Neuropsychologia, 6, 255-265

    Damasio et al (1996) Nature, 380, 499-505

    Daum et al (1993) J. Neurol. Neurosurg. Psychiatry, 52, 47-51

    Ferraro et al (1993) Brain Cog., 21, 163-180

    Fletcher et al (1996) Brain, 119, 1587-1596

    Gabrieli et al (1993) Behav. Neurosci., 107, 899-910

    Gabrieli et al (1995) Psych. Sci, 6, 76-82

    Gabrieli et al (1995b) Behav. Neurosci., 109, 819-827

    Gabrieli (1996) Proc. Nat. Acad. Sci. USA, 93, 13534-13540

    Gabrieli et al (1997) Neuropsychology, 11, 272-281

    Gabrieli et al (1998) Brain Cog., 7, 525-539

    Gabrieli, J. (1998). Annu. Rev. Psychol. 49: 87-115

    Graf et al (1985) J. Exp. Psych: Learn. Mem & Cog, 11, 501-518

    Grafton et al (1992) J. Neurosci., 12, 2542-2548

    Hanley et al (1991) Quart. J. Exp. Psych., 43A, 101-125

    Hazeltine et al (1997) Brain, 120, 123-140

    Heindel et al (1989) J. Neurosci., 9, 582-587

    Henson et al (1999) J. Neurosci., 19, 3962-3972

    Hodges et al (1995) Brain, 15, 1783-1806

    Hyman et al (1984) Science, 225, 1168-1170

    Janowsky et al (1989) Behav. Neurosci., 103, 548-560

    Jonides et al (1993) Nature, 363, 623-625

    Keane et al (1997) Neuropsych., 11, 59-69

    LeBar et al (1995) J. Neurosci., 15, 6846-6855

    LePage et al (1998) Hippocampus, 8, 313-322

    Logan & Grafton (1995) Proc. Nat. Acad. Sci. USA, 92, 7500-7504

    McGlinchley-Berroth et al (1995) Alcohol Clin. Exp. Res., 1127-1132

    McGlinchley-Berroth et al (1997) Behav. Neurosci.

    Milner (1963) Arch. Neurol., 9, 90-100

    Morris et al (1998) Nature, 393, 467-470

    Martin et al (1996) Nature 379, 649-652

    Mummery et al (1996) Proc. Roy. Soc. London B, 263, 989-995

    Owen (1997) Euro. J. Neurosci., 9, 1329-1339

    Owen et al (1998) Proc. Nat. Acad. Sci. USA, 95

    Nissen & Bullemer (1987) Cog. Psych., 19, 1-32

    Paulesu et al (1993) Nature, 362, 342-344

    Peterson et al (1989) J. Cog. Neurosci., 1, 153-170

    Petrides & Milner (1982) Neuropsychologia, 20, 601-614

    Press et al (1989) Nature, 341, 54-57

    Rugg (1995) Electrophysiology of mind. Oxford: OUP

    Schacter et al (1996) Proc. Nat. Acad. Sci. USA, 93, 321-325

    Schacter & Buckner (1998) Neuron, 20, 185-195

    Scoville & Milner (1957) J. Neurol. Neurosurg. Psychiatry, 20, 11-21

    Shallice et al (1994) Nature, 368, 633-635

    Shimamura et al (1995) J. Cog. Neurosci., 7, 144-152

    Smith et al. (1995) J. Cog. Neurosci., 7, 337-356.

    Tulving (1983) Elements of episodic memory. London: OUP

    Tulving et al (1994) Proc. Nat. Acad. Sci. USA, 91, 2016-2020

    Vargha-Khadem et al (1997) Science, 277, 376-380

    Warrington (1975) Quart. J. Exp. Psych., 27, 635-657

    Warrington & Shallice (1984) Brain, 106, 859-878

    Warrington & Shallice (1969) Brain, 92, 885-896

    Warrington & Weiskrantz (1970) Nature, 228, 628-630

    Willingham & Koroshetz (1993) Psychobiology, 21, 173-182

    Woodruff-Pak et al (1990) Clin. Neurosci. Neuropath., 1, 45-49

    Woodruff-Pak & Papka (1996) J. Int. Neuropsychol. Soc, 2, 323-334

    Sanes et al (1990) Brain, 113, 103-120

    Tulving et al (1996) Cerebral Cortex, 6, 71-79

    Zola-Morgan et al (1986) J. Neurosci. 6, 2950-2967


    ad