Introducción a la Inteligencia Artificial - PowerPoint PPT Presentation

Introducci n a la inteligencia artificial l.jpg
Download
1 / 73

  • 222 Views
  • Uploaded on
  • Presentation posted in: Pets / Animals

Introducción a la Inteligencia Artificial. M.C. Juan Carlos Olivares Rojas. jolivares@uvaq.edu.mx juancarlosolivares@hotmail.com @jcolivares http://antares.itmorelia.edu.mx/~jcolivar Enero, 2010. Competencia Específica.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

Download Presentation

Introducción a la Inteligencia Artificial

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Introducci n a la inteligencia artificial l.jpg

Introducción a la Inteligencia Artificial

M.C. Juan Carlos Olivares Rojas

jolivares@uvaq.edu.mx

juancarlosolivares@hotmail.com

@jcolivares

http://antares.itmorelia.edu.mx/~jcolivar

Enero, 2010


Competencia espec fica l.jpg

Competencia Específica

Conoce los fundamentos teóricos que sustentan la Inteligencia Artificial


Agenda l.jpg

Agenda

Nuevas Tendencias en el campo de la Inteligencia Artificial. Jueves 28 de enero.

Ensayo de la película 2001. Odisea Especial. Jueves 4 de Febrero.

Ontología sobre un tema en específico. Lunes 8 de febrero.


Outline l.jpg

Outline

1.1 Basic Concepts

1.2 Applications

1.3 Intelligent Systems and Learning

1.4 Semantic Networks

1.5 Description and Match Method


Outline5 l.jpg

Outline

1.6 Analogy Problems

1.7 Abstraction Recognition

1.8 Knowledge Interpretation


Basic concepts l.jpg

Basic Concepts

  • What’s the diference bewtween Artificial Intelligence (AI) and Human Intelligence?

  • All the sucessfully AI Systems are based on human knowledge and experience.

  • Most of the AI Systems can be costructed only when the human intelligence can be expresed in easily form (for instance: if x then y).


Basic concepts7 l.jpg

Basic Concepts

  • AI Systems extend human experts, but never can’t substituting either “taken” most of human intlligence.

  • AI Systems don’t have common sense and generallity of human beings.

  • Human Intelligence are very complex for computing.


Basic concepts8 l.jpg

Basic Concepts

If a problem can not be described, then can not be programmed

  • Human Intelligence have these features:

    Reasoning.

    Behavior.

    Use of Metaphores and Analogies.

    Concepts Creating and Use.


Problem l.jpg

Problem

Make a Java Program which calculate if a number give for the user is a Perfect Number or not.

What are the steps for solving this problem?


Inteligence l.jpg

Inteligence

  • Capacity to solution all clasess of problems

  • Intelligence is very subjective.

  • “Intelligence Distinguished man of animals”

  • AI is an interdiciplinary science which involves phylosophy, matemathics, biology, electronics, etc,


Turing test l.jpg

Turing Test

Alan M. Turing defined in 1950 one form to check if a machine is intelligent or not.

Turing test consist to set two human and one machine in a dark room. The humans and the machine are not visible between their.

One human must act like an Interviewer asking some questions to the other participants.


Turing test12 l.jpg

Turing Test

Turing Test is passed when the interviewer can not distinguished the answer between the human and the machine.

The new AI systems required the perception sense to pass the test.


Ai genesys l.jpg

AI Genesys

Martin Minsky did cotributions to define brain models in computers.

ELIZA of Joseph Weizenbaum and JULIA of Mauldin were the first AI Systems with Intelligent Dialagues.

The first AI Systems were development for solving some problems like chess.


G nesis de la ia l.jpg

Génesis de la IA

In 1956 John McCarthy and Claude Shanon published “Automata Studies” where defined the Automata Theory.

In 1956 John McCarthy defined the AI concept, reason why he is considered the AI Father.

The AI history is very old. The greeks were the first to use logic to solve a lot of problems.


Ai genesys15 l.jpg

AI Genesys

In 1965 Chomsky defined the Formal Languages Theories.

McCulloh and Pits in 1943 define the relations between neurons and simple computational elements.

In 1962 Rosenblatt defined the Perceptron and the Neuronal Networks Teories.


Maze problem l.jpg

Maze Problem

How a person in a maze can be exit without lost?

Are there an optimal solution for the problem?


Expert systems l.jpg

Expert Systems

They were the first AI comercial product sucessfully.

These Systems let to introduce some information in an specific knowledge area into a computer (knowledge database), they act like a human expert.

These Systems simulate human reasoning by applicating especific knowledge and inferences.


Natural language processing l.jpg

Natural Language Processing

It’s a complex problem. For example (in spanish):

“Ideas verdes descoloridas duermen furiosamente”,

“Ideas furiosamente verdes descoloridas duermen”.


Natural language processing19 l.jpg

Natural Language Processing

“El banco cierra a las 3:00”

“Las almejas están listas para comer”

“Las almejas están listas para [ser] comidas [por nosotros]”


Artificial vision l.jpg

Artificial Vision

It’s an application of patter recognition, this area have a lot of application such as:

Medical Diagnostic

Automatic Signal Processing

Automatic Industrial Product

Automatic Vigilance Systems

OCR (Optical Character Recognition)


Robotic l.jpg

Robotic

This science implies the concepts of perception, motion (spatial reasoning), planning.

The main problem autonomous robots are interacting with the human-world, because exists many obstacles unexpected events and dinamic environments.


Learning l.jpg

Learning

This area studies the way in how computers can obtain new knowledge to solve a problem.

In this sense, learning means to make a computer which is able to benefit for the experience obtained.


Games l.jpg

Games

AI is applied in games to give more realism and complexity. Also AI gives the “Physics”.

The n-queens problem consist in putting n chess queens on an n×n chessboard such that none of them is able to capture any other using the standard chess queen's moves.

Activitie: Obtain a Solution in a sheet of paper for a 6x6 chessboard. First 100, Second 80, Third 60 pts.


Genetic algorithms l.jpg

Genetic Algorithms

It’s a computational technique inspired in biological models which are used to realize eficient search in spatial solution highly huge and complex.

Genetic Algorithms are adaptative methods which can used to implement searches and optimization problems.

This has given the creation of emergence areas such as evolutionary computation and swarm computing algorithms that rely on events of nature.


Cellular automata l.jpg

Cellular Automata

It’s a discrete model studied in computing, mathematics, biology and microstructure modeling.

It consists of a regular grid of cells, each in one of a finite number of states. The grid can be in any finite number of dimensions.

Time is also discrete, and the state of a cell at time t is a function of the states of a finite number of cells (neighborhood) at time t − 1.


Cellular automata26 l.jpg

Cellular Automata

These neighbors are a selection of cells relative to the specified cell, and do not change (though the cell itself may be in its neighborhood, it is not usually considered a neighbor).

Every cell has the same rule for updating, based on the values in this neighbourhood. Each time the rules are applied to the whole grid a new generation is created.


Cellular automata27 l.jpg

Cellular Automata


The game of life l.jpg

The Game of Life

The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is the best-known example of a cellular automaton.

The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. One interacts with the Game of Life by creating an initial configuration and observing how it evolves.


The game of life29 l.jpg

The Game of Life

The universe of the Game of Life is an infinite two-dimensional orthogonal grid of square cells, each of which is in one of two possible states, live or dead.

Every cell interacts with its eight neighbours, which are the cells that are directly horizontally, vertically, or diagonally adjacent. At each step in time, the following transitions occur:


The game of life30 l.jpg

The Game of Life

Any live cell with fewer than two live neighbours dies, as if by needs caused by underpopulation.

Any live cell with more than three live neighbours dies, as if by overcrowding.

Any live cell with two or three live neighbours lives, unchanged, to the next generation.

Any dead cell with exactly three live neighbours becomes a live cell.


The game of life31 l.jpg

The Game of Life

Play the game at: www.bitstorm.org/gameoflife/


Virtual reality l.jpg

Virtual Reality

It’s one of the most recent applications of AI. It’s consist in the construction of programs which achive to fool the human senses, make it belive that we are floating, running or flying in an airplane.

This application has been used in a fligth simulator for pilots, astronauts and drivers.


Intelligent systems and learning l.jpg

Intelligent Systems and Learning

Most of the actual system say that they are intelligents (“smart”).

If an application can take autonomous decisions in a real time in independet form, it’s considered intelligent. The main feature of this systems are the “adaptability” like saving energy.


Intelligent systems and learning34 l.jpg

Intelligent Systems and Learning

The most important feature of an Intelligent System are the way to representing the knowledge, the way in which the information is retrived and the way in which adquire new knowledge (learning).

The representation ways (“explicitation”) of knowledge are diverse and it influences in the retrival informtion and learning ways.


Intelligent systems and learning35 l.jpg

Intelligent Systems and Learning

Always that a model is developed it has two represetation: logical and physical.

This representations need “mapping” to working together.

When we have a real life problem, this have to mapping in a computer schema for working in a computational system.


Intelligent syst and knowledge l.jpg

Intelligent Syst. and Knowledge

Tacking back to the Maze Problem ¿How can be represent this model and the knowledge?

It can be represented with a matrix, graph, finite state machine, etc. Also it must rules for play this game.

If we don’t have the two representations we can not understand and learn the game.


Intelligent systems and knowledge l.jpg

Intelligent Systems and Knowledge

In general, knowledge s define by laws and particular languages. Languages define rules.

The same knowledge is structured in diferents represtentation such as database, semantic networks, frames, conceptual maps, etc., but after all it must have the same meaning (semantics).


Maze generator l.jpg

Maze Generator

We must try to don´t generate a loop


Semantic networks l.jpg

Semantic Networks

They are other simple form to explicity knowledge, They are conformed by graphs which coding knowledge in a taxonomic form.

Nodes represent categories and Edges represents the relations between this categories.

There are two types of special relatinoships: Is-A y la Have-A.


Semantic networks40 l.jpg

Semantic Networks

We can access throught of each concepts to infer knowledge.

The scripts are other way to represent knowledge. They are composed by components called slots, these are a set of elements concept-values.

Scripts are more easily to ntroduce than mind maps.


Semantic networks41 l.jpg

Semantic Networks


Script l.jpg

Script

Script Example:

Printers

Subset_of: Office_Machine

Superset_of: {Laser_Printer, Inject_Printer}

Feed_Source: Door_Socket

Author: Juan_Perez

Date: 07_January_2008


Onthologies l.jpg

Onthologies

Other way to represent knowledge with a lot of use recently is Onthology, It’s consist of relations between distinct concepts like definitions. Onthologies can be represented throught languages such as XML.

Knowledge representation has a great importance this is the reason because actually we talk about Knowledge Engineering.


Semantic networks44 l.jpg

Semantic Networks

Onthologies act like a dictionary. Some elements like agents used this information to represent and retrieve knowledge.

Frames are structure used to represent values, restricctions, process, relation, etc. Frames represent with tuples one propertie of an object. Object-Oriented Programming was originated by Frames.


Concept mind l.jpg

Concept Mind


Onthology l.jpg

Onthology


Activity l.jpg

Activity

Use a Protege Onthology Editor for Make a Onthology about Mexican Soccer.


The description match method l.jpg

The Description&Match Method

It’s used for AI problem solving and It’s one the most basic method.

The first step consists to identified all features of an object.

Later, It realice a seach in a well-define set of objects.

It needs two very import methods: the extractor and evaluator of knowledge.


The description and match method l.jpg

The Description and Match Method

  • When the match process is doing, one posibility is the object don’t be the same pattern in the knowledge Database. This is the reason because We need a Similarity Function.

  • For Example (In Spanish):

    AMOR

    Love a person or thing for over all things

    Word composeb by 4 characters: ‘A’, ‘M’, ‘O’ and ‘R’ yuxtapuestos


The description match method50 l.jpg

The Description&Match Method

AMOR = AMORExact Macth

AMOR = ROMA 0% similarity but contains for characters

Amor = AMOR 25% similarity, contains all character but in uppercase

Amor = Cariño 0% similarity but the same meaning

Amor = Amar 75% it’s a consequence


The description match method51 l.jpg

The Description&Match Method

Circle

Description:

Figure formed by all the points which distance are equidistant of the center point in an angle of 0 to 360 grades.

Properties:

Center (point)

Diametrer (twice radio)

Areas


The description and match method52 l.jpg

The Description and Match Method

100% Similarity

=

=

?% Have the same form but diferent size and color

?% Have the same high but diferent width

=

?% Have the same color

=


The description and match method53 l.jpg

The Description and Match Method

  • It`s used in multiples branches such as:

    • Digital Fingerprint Recognition

    • Voice Recognition

    • Natural Language Recognition

    • Software Requirement Validation

    • Etc.

  • We must represent in a correct form the knowledge if We can compare.


The farmer fox g oose and wheat problem l.jpg

The Farmer, Fox, Goose and Wheat Problem

A farmer wants to move himself, a silver fox, a fat goose, and some tasty grain across a river, from the west side to the east side. Unfortunately, his boat is so small he can take at most one of his possessions across on any trip. Worse yet, an unattended fox will eat a goose, and an unattended goose will eat grain, so the farmer must not leave the fox alone with the goose or the goose alone with the grain. What is he to do?


The farmer fox g oose and wheat problem55 l.jpg

The Farmer, Fox, Goose and Wheat Problem

Farmer

Fox

Goose

Wheat

Farmer

Fox

Goose

Wheat

¿Se puede utilizar el método de descripción y pareamiento?


The farmer fox g oose and wheat problem56 l.jpg

The Farmer, Fox, Goose and Wheat Problem

Fox

Farmer

Goose

Wheat

Wheat

Farmer

Fox

Goose

Farmer

Goose

Wheat

Fox

Farmer

Fox

Goose

Wheat

Wheat

Farmer

Fox

Goose

Farmer

Fox

Goose

Wheat

Farmer

Fox

Goose

Wheat

Fox

Wheat

Farmer

Goose

Farmer

Fox

Wheat

Goose

Goose

Wheat

Farmer

Fox

Farmer

Goose

Fox

Wheat

Fox

Goose

Wheat

Farmer

Farmer

Fox

Goose

Wheat

Fox

Goose

Wheat

Farmer

Goose

Wheat

Fox

Farmer

Fox

Goose

Wheat

Farmer


Activity57 l.jpg

Activity

In a Software Development Company 5 programers implement the same algorithms obtained the follow results:


Activity58 l.jpg

Activity

The enterprise needs to know how are the best pair (pair programing).

For trying to solve this problem We need to define a similarity function such as:

s(v, w)=|p1-q1| + |p2-q2| + |p3-q3|

Where:

v and w are programmers represent in the form of (p1, p2, p3)


Activity59 l.jpg

Activity

pi is a propertie

We also need a criteria for similarity in this case consider the lower punctuation as the best solution.

Programming the solution to obtain the best pair.

Programming the solution to obtain the best pair in a specific propertie


Activity60 l.jpg

Activity

If We changed the criteria in where LOC are more important 60% than the other properties, how must be the new similarity function?

If We need one group with the 3 best programmer, how must be the similarity function?


Analogy problems l.jpg

Analogy Problems

It’s other form to problem solving tha it’s used in AI.

Analogy is a special type of relation that define how are objects represented los objetos de una categoría y como obtener sus predecesores y antecesores inmediatos.

Generalmente se habla de análogo cuando se tiene el mismo tipo de relación aun cuando sean entidades diferentes.


Problemas de analog as l.jpg

Problemas de Analogías

Alguna vez nos hemos preguntado ¿por qué en la mayoría de los exámenes de admisión generalmente son más importantes que los de conocimientos?

Por que en la mayoría de los casos el conocimiento de cierta forma se puede adquirir pero la forma de aprender y razonar es sumamente complicado. En muchos casos son más importantes las reglas que el conocimiento.


Problemas de analog as63 l.jpg

Problemas de Analogías

En matemáticas y en el área de programación se utiliza mucho la analogía para resolver problemas.

De acuerdo con Polya, para resolver problemas se necesita de los siguientes pasos:

1) Comprender el problema

2) Concebir un plan

3) Ejecutar el plan y,

4) Examinar la solución.


Problemas de analog as64 l.jpg

Problemas de Analogías

A

B

2

3

C

4

1

¿Cómo quedarían D y 5?


Problemas de analog as65 l.jpg

Problemas de Analogías

A

C

B

1

2

¿Qué problemas se presentan con la Abstracción de la Figura D o bien de la Figura 3?

La resolución de problemas por analogía tiene como base cierto conocimiento previo en ocasiones difícil de obtener.


Reconocimiento de abstracciones l.jpg

Reconocimiento de Abstracciones

A lo largo de esta presentación se ha podido comprobar que prácticamente el problema está resuelto si el problema está descrito.

El reconocimiento de abstracciones es un concepto muy subjetivo dado que éstas son combinaciones de estados mentales y eventos.

Los SI se basan fundamentalmente en reglas ECA (Evevento-Condición-Acción)


Reconocimiento de abstracciones67 l.jpg

Reconocimiento de Abstracciones

Generalmente respondemos a estímulos (eventos), y en base a ellos vemos cuales son importantes para nosotros y nos comportamos de cierta manera.

Para lo que a una persona le representa algo para otra representa cosas totalmente distintas.

La abstracción permite llegar a cierto tipo de conclusiones y preguntas resueltas.


Interpretaci n del conocimiento l.jpg

Interpretación del Conocimiento

La interpretación del conocimiento, es decir la utilización de ese conocimiento es un factor muy importante que aun la IA no ha podido definir bien.

El conocimiento se puede interpretar de muchas formas y sus áreas de aplicación son diversas.

Existen muchas corrientes filosóficas que le tratan de dar sentido al conocimiento: empirismo y racionalismo científico.


Interpretaci n del conocimiento69 l.jpg

Interpretación del Conocimiento

Se pretende que las reglas y hechos (base de conocimientos) permitan resolver problemas y que a su vez de la resolución de estos problemas se obtenga nuevos conocimientos.


Bibliograf a l.jpg

Bibliografía

Decker, R. y Hirshfield, S. (2001). Máquina Analítica. Introducción a las Ciencias de la Computación con Uso de Internet, Thomson, México. Capítulo 9 Inteligencia Artificial pp. 295-325.

Hernández, V. (2007). Mapas Conceptuales La gestión del Conocimiento en la Didáctica. Segunda Edición, México: Alfaomega.


Bibliograf a71 l.jpg

Bibliografía

G. Polya, (1982), “Cómo Plantear y Resolver Problemas”, traducción al español de “How to Solve It”, Ed. Trillas, México, 1982, ISBN: 968-24-0064-3.

Montes, M. y Villaseñor L. (2008) Fundamentos de Inteligencia Artificial Métodos básicos de solución de problemas, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, México.


Bibliograf a72 l.jpg

Bibliografía

Winston, P. (1992) Artificial Intelligence, 3ra. Edición, Addison-Wesley.


Preguntas dudas y comentarios l.jpg

¿Preguntas, dudas y comentarios?


  • Login