1 / 64

Principles of Life

1. Principles of Life. Chapter 1 Principles of Life. Key Concepts 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow 1.2 Genetic Systems Control the Flow, Exchange, Storage, and Use of Information 1.3 Organisms Interact with and Affect Their Environments.

Faraday
Download Presentation

Principles of Life

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 Principles of Life

  2. Chapter 1 Principles of Life • Key Concepts • 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow • 1.2 Genetic Systems Control the Flow, Exchange, Storage, and Use of Information • 1.3 Organisms Interact with and Affect Their Environments

  3. Chapter 1 Principles of Life 1.4 Evolution Explains Both the Unity and Diversity of Life 1.5 Science Is Based on Quantifiable Observations and Experiments

  4. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow • Biology—the scientific study of living things • “Living things”—All the diverse organisms descended from a single-celled ancestor (a single common ancestor)

  5. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Characteristics shared by all living organisms: Composed of a common set of chemical components and similar structures • Contain genetic information that uses a nearly universal code • Convert molecules obtained from their environment into new biological molecules • Extract energy from the environment and use it to do biological work

  6. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Regulate their internal environment • Replicate their genetic information in the same manner when reproducing • Share sequence similarities among a fundamental set of genes • Evolve through gradual changes in genetic information

  7. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Earth formed between 4.6 and 4.5 billion years ago. It was some 600 million years or more before the earliest life evolved.

  8. Figure 1.1 Life’s Calendar

  9. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Complex biological molecules possibly arose from random associations of chemicals in the early environment. Experiments that simulate conditions on early Earth show that this was possible. Critical step for evolution of life—formation of nucleic acids

  10. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Biological molecules were enclosed in membranes, to form the first cells. Fatty acids were important in forming membranes.

  11. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow For 2 billion years, organisms were unicellular prokaryotes. Early prokaryotes were confined to oceans, where they were protected from UV light. There was little or no O2 in the atmosphere, and hence no protective ozone (O3) layer.

  12. Figure 1.2 The Basic Unit of Life is the Cell

  13. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Photosynthesis evolved about 2.7 billion years ago. The energy of sunlight is transformed into the energy of biological molecules. Earliest photosynthetic cells were probably similar to cyanobacteria. O2 was a byproduct of photosynthesis, and it began to accumulate in the atmosphere.

  14. Figure 1.3 Photosynthetic Organisms Changed Earth’s Atmosphere (Part 1)

  15. Figure 1.3 Photosynthetic Organisms Changed Earth’s Atmosphere (Part 2)

  16. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow O2 was poisonous to many early prokaryotes. Organisms that could tolerate O2 evolved aerobic metabolism (energy production using O2), which is more efficient than anaerobic metabolism. Organisms were able to grow larger. Aerobic metabolism is used by most living organisms today.

  17. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow O2 also produced a layer of ozone (O3) in the upper atmosphere. This layer absorbs UV light, and its formation allowed organisms to move from the ocean to land.

  18. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Some cells evolved membrane-enclosed compartments called organelles. Example: The nucleus contains the genetic information. These cells are eukaryotes. Prokaryotes lack nuclei and other internal compartments.

  19. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Some organelles may have originated by endosymbiosis, when larger cells engulfed smaller ones. Mitochondria (site of energy generation) probably evolved from engulfed prokaryotic organisms. Chloroplasts (site of photosynthesis) probably evolved from photosynthetic prokaryotes.

  20. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Multicellular organisms arose about 1 billion years ago. Cellular specialization—cells became specialized to perform certain functions.

  21. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Evolution of species: Mutations are introduced when a genome is replicated. Some mutations give rise to structural and functional changes in organisms, and new species arise.

  22. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Each species has a distinct scientific name, a binomial: • Genus name • Species name Example: Homo sapiens

  23. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Evolutionary relationships of species can be determined by comparing genomes. A phylogenetic tree documents and diagrams evolutionary relationships.

  24. Figure 1.4 The Tree of Life

  25. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Relationships in the tree of life are determined by fossil evidence, structures, metabolic processes, behavior, and molecular analyses of genomes. Three domains of life: • Bacteria (prokaryotes) • Archaea (prokaryotes) • Eukarya (eukaryotes)

  26. Concept 1.1 Living Organisms Share Common Aspects of Structure, Function, and Energy Flow Because all life is related, discoveries made using one type of organism can be extended to other types. Biologists use model systems for research, such as the green alga Chlorella to study photosynthesis.

  27. Concept 1.2 Genetic Systems Control the Flow, Exchange, Storage, and Use of Information Genome—the sum total of all the information encoded by an organism’s genes DNA consists of repeating subunits called nucleotides. Gene—a specific segment of DNA that contains information for making a protein Proteins govern chemical reactions in cells and form much of an organism’s structure.

  28. Figure 1.5 DNA Is Life’s Blueprint

  29. Concept 1.2 Genetic Systems Control the Flow, Exchange, Storage, and Use of Information Mutations alter nucleotide sequences of a gene, and the protein is often altered as well. Mutations may occur during replication, or be caused by chemicals and radiation. Most are harmful or have no effect, but some may improve the functioning of the organism. Mutations are the raw material of evolution.

  30. Concept 1.2 Genetic Systems Control the Flow, Exchange, Storage, and Use of Information Complete genome sequences have been determined for many organisms. Genome sequences are used to study the genetic basis of everything from physical structure to inherited diseases, and evolutionary relationships.

  31. Concept 1.3 Organisms Interact with and Affect Their Environments Biological systems are organized in a hierarchy. Traditionally, biologists concentrated on one level of the hierarchy, but today much biology involves integrating investigations across many levels.

  32. Figure 1.6 Biology Is Studied at Many Levels of Organization (Part 1)

  33. Figure 1.6 Biology Is Studied at Many Levels of Organization (Part 2)

  34. Concept 1.3 Organisms Interact with and Affect Their Environments Living organisms acquire nutrients from their environments. Nutrients supply energy and materials for biochemical reactions. Some reactions break nutrient molecules into smaller units, releasing energy for work.

  35. Concept 1.3 Organisms Interact with and Affect Their Environments Examples of cellular work: Synthesis—building new complex molecules from smaller chemical units Movement of molecules, or the whole organism Electrical work of information processing in nervous systems

  36. Concept 1.3 Organisms Interact with and Affect Their Environments Metabolism is the sum total of all chemical transformations and other work done in all cells of an organism. The reactions are integrally linked—the products of one are the raw materials of the next.

  37. Concept 1.3 Organisms Interact with and Affect Their Environments In multicellular organisms, cells are specialized, or differentiated. Differentiated cells are organized into tissues. Tissue types are organized into organs, and organ systems are groups of organs with interrelated functions.

  38. Concept 1.3 Organisms Interact with and Affect Their Environments Multicellular organisms have an internal environmentthat is acellular—an extracellular environment of fluids. Homeostasis—maintenance of a narrow range of conditions in this internal environment Regulatory systems maintain homeostasis in both multicellular organisms and in individual cells.

  39. Concept 1.3 Organisms Interact with and Affect Their Environments Organisms interact: Population—group of individuals of the same species that interact with one another A community—populations of all the species that live in the same area and interact Communities plus their abiotic environment constitute an ecosystem.

  40. Concept 1.3 Organisms Interact with and Affect Their Environments Individuals may compete with each other for resources, or they may cooperate (e.g., in a termite colony). Plants also compete for light and water, and many form complex partnerships with fungi, bacteria, and animals.

  41. Concept 1.3 Organisms Interact with and Affect Their Environments Interactions of plants and animals are major evolutionary forces that produce specialized adaptations. Species interaction with one another and with their environment is the subject of ecology.

  42. Concept 1.4 Evolution Explains Both the Unity and Diversity of Life Evolution is a change in genetic makeup of biological populations through time—a major unifying principle of biology. Charles Darwin proposed that all living organisms are descended from a common ancestor by the mechanism of natural selection.

  43. Concept 1.4 Evolution Explains Both the Unity and Diversity of Life Natural selection leads to adaptations—structural, physiological, or behavioral traits that enhance an organism’s chances of survival and reproduction

  44. Figure 1.7 Adaptations to the Environment (Part 1)

  45. Figure 1.7 Adaptations to the Environment (Part 2)

  46. Figure 1.7 Adaptations to the Environment (Part 3)

  47. Figure 1.7 Adaptations to the Environment (Part 4)

  48. Concept 1.4 Evolution Explains Both the Unity and Diversity of Life In science, a theory is a body of scientific work in which rigorously tested and well-established facts and principles are used to make predictions about the natural world. Evolutionary theory is: (1) a body of knowledge supported by facts (2) the resulting understanding of mechanisms by which populations have changed and diversified over time, and continue to evolve

  49. Concept 1.4 Evolution Explains Both the Unity and Diversity of Life Evolution can be observed and measured by: Changes in genetic composition of populations over short time frames The fossil record—population changes over very long time frames

  50. Concept 1.5 Science Is Based on Quantifiable Observations and Experiments Scientific investigations are based on observation and experimentation. Understanding the natural history of organisms—how they get food, reproduce, behave, regulate internal environments, and interact with other organisms—facilitates observation and leads to questions.

More Related