UNIVERSIDAD NACIONAL
This presentation is the property of its rightful owner.
Sponsored Links
1 / 160

UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO” FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I CINEMATICA DE UNA PARTICULA PowerPoint PPT Presentation


  • 467 Views
  • Uploaded on
  • Presentation posted in: General

UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO” FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I CINEMATICA DE UNA PARTICULA AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PERÚ 2010. I.INTRODUCCIÓN. MECANICA. MECANICA DE CUERPO RIGIDOS. MECÁNICA DE CUERPO DEFORMABLE.

Download Presentation

UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO” FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I CINEMATICA DE UNA PARTICULA

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

UNIVERSIDAD NACIONAL

“SANTIAGO ANTÚNEZ DE MAYOLO”

FACULTAD DE INGENIERÍA CIVIL

CURSO: FISICA I

CINEMATICA DE UNA PARTICULA

AUTOR: Mag. Optaciano L. Vásquez García

HUARAZ - PERÚ

2010


I introducci n

I.INTRODUCCIÓN

MECANICA

MECANICA DE CUERPO RIGIDOS

MECÁNICA DE CUERPO DEFORMABLE

MECÁNICA DE FLUIDOS

ESTATICA

DINAMICA

CINEMATICA

CINETICA


Ii nocion de cinematica

II.NOCION DE CINEMATICA

  • La cinemática (del griegoκινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo.

  • También se dice que la cinemática estudia la geometría del movimiento.

  • En la cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia.


Ii elementos basicos de la cinematica

II.ELEMENTOS BASICOS DE LA CINEMATICA

1.ESPACIO ABSOLUTO.

  • Es decir, un espacio anterior a todos los objetos materiales e independiente de la existencia de estos.

  • Este espacio es el escenario donde ocurren todos los fenómenos físicos, y se supone que todas las leyes de la física se cumplen rigurosamente en todas las regiones de ese espacio.

  • El espacio físico se representa en la Mecánica Clásica mediante un espacio puntual euclídeo.


Ii elementos basicos de la cinematica1

II.ELEMENTOS BASICOS DE LA CINEMATICA

2.TIEMPO ABSOLUTO

La Mecánica Clásica admite la existencia de un tiempo absoluto que transcurre del mismo modo en todas las regiones del Universo y que es independiente de la existencia de los objetos materiales y de la ocurrencia de los fenómenos físicos.


Ii elementos basicos de la cinematica2

II.ELEMENTOS BASICOS DE LA CINEMATICA

2.MOVIL

  • El móvil más simple que podemos considerar es el punto material o partícula.

  • La partícula es una idealización de los cuerpos que existen en la Naturaleza, en el mismo sentido en que lo es el concepto de punto geométrico.

  • Entendemos por punto material o partícula a un cuerpo de dimensiones tan pequeñas que pueda considerarse como puntiforme; de ese modo su posición en el espacio quedará determinada al fijar las coordenadas de un punto geométrico.

  • Naturalmente la posibilidad de despreciar las dimensiones de un cuerpo estará en relación con las condiciones específicas del problema considerado.


Iii relatividad del movimiento

III.RELATIVIDAD DEL MOVIMIENTO

  • Estudiar el movimiento de un cuerpo quiere decir determinar su posición en el espacio en función del tiempo, para ello se necesita un sistema de referencia.

  • En el espacio euclidiano un sistema de queda definido por los elementos siguientes.

    a.un origen O, que es un punto del espacio físico.

    b.una base vectorial del espacio vectorial asociado a dicho espacio físico.


Iii relatividad del movimiento1

III. RELATIVIDAD DEL MOVIMIENTO

  • Decimos que una partícula se encuentra en movimiento con respecto a un referencial si su posición con respecto a él cambia en el transcurso del tiempo.

  • En caso contrario, si la posición del cuerpo no cambia con respecto al referencial, el cuerpo está en reposo en dicho referencial.

  • De las definiciones que acabamos de dar para el movimiento y el reposo de un cuerpo, vemos que ambos conceptos son relativos.


Iii relatividad del movimiento2

III.RELATIVIDAD DEL MOVIMIENTO

  • En la Figura hemos representado dos observadores, S y S′, y una partícula P.

  • Estos observadores utilizan los referenciales xyz y x′y′z′, respectivamente.

  • Si S y S′ se encuentran en reposo entre sí, describirán del mismo modo el movimiento de la partícula P. Pero si S y S′ se encuentran en movimiento relativo, sus observaciones acerca del movimiento de la partícula P serán diferentes.


Iii relatividad del movimiento3

III.RELATIVIDAD DEL MOVIMIENTO

  • Para el observador en ubicado en la tierra la LUNA describirá una órbita casi circular en torno a la TIERRA.

  • Para el observador ubicado en el sol la trayectoria de la luna es una línea ondulante.

  • Naturalmente, si los observadores conocen sus movimientos relativos, podrán reconciliar sus observaciones


Iv movimiento rectil neo

IV.MOVIMIENTO RECTILÍNEO

Decimos que una partícula tiene un movimiento rectilíneo cuando su trayectoria medida con respecto a un observador es una línea recta

1.POSICIÓN.

  • La posición de la partícula en cualquier instante queda definida por la coordenada x medida a partir del origen O.

  • Si x es positiva la partícula se localiza hacia la derecha de O y si x es negativa se localiza a la izquierda de O.


Iv movimiento rectil neo1

IV.MOVIMIENTO RECTILÍNEO

2.DESPLAZAMIENTO.

  • El desplazamiento se define como el cambio de posición.

  • Se representa por el símbolo Δx.

  • Si la posición final de la partícula P’ está la derecha de su posición inicial P, el desplazamiento x es positivo cuando el desplazamiento es hacia la izquierda ΔS es negativo


Iv movimiento rectil neo2

IV.MOVIMIENTO RECTILÍNEO

3.VELOCIDAD MEDIA

Si la partícula se mueve de P a P’ experimentando un desplazamiento Δx positivo durante un intervalo de tiempo Δt, entonces, la velocidad media será


Iv movimiento rectil neo3

IV.MOVIMIENTO RECTILÍNEO

3.VELOCIDAD MEDIA

  • La velocidad media también puede interpretarse geométricamente para ello se traza una línea recta que une los puntos P y Q como se muestra en la figura. Esta línea forma un triángulo de altura x y base t.

  • La pendiente de la recta es x/t. Entonces la velocidad media es la pendiente de la recta que une los puntos inicial y final de la gráfica posición-tiempo


Iv movimiento rectil neo4

IV.MOVIMIENTO RECTILÍNEO

4.VELOCIDAD INSTANTÁNEA

  • Es la velocidad de la partícula en cualquier instante de tiempo se obtiene llevando al límite la velocidad media es decir, se hace cada vez más pequeño el intervalo de tiempo y por tanto valores más pequeños de x. Por tanto:


Iv movimiento rectil neo5

IV.MOVIMIENTO RECTILÍNEO

4.VELOCIDAD INSTANTÁNEA

Si una partícula se mueve de P a Q. A medida que Q se aproxima más y más a P los intervalos de tiempo se hacen cada vez menores. A medida que Q se aproxima a P el intervalo de tiempo tiende a cero tendiendo de esta manera las pendientes a la tangente. Por tanto, la velocidad instantánea en P es igual a la pendiente de la recta tangente en el punto P. La velocidad instantánea puede ser positiva (punto P), negativa (punto R) o nula (punto Q) según se trace la pendiente correspondiente


Iv movimiento rectil neo6

IV.MOVIMIENTO RECTILÍNEO

5.RAPIDEZ MEDIA.

La rapidez media se define como la distancia total de la trayectoria recorrida por una partícula ST, dividida entre el tiempo transcurrido t, es decir,


Iv movimiento rectil neo7

IV.MOVIMIENTO RECTILÍNEO

6.ACELERACIÓN MEDIA .

Si la velocidad de la partícula al pasar por P es v y cuando pasa por P’ es v’ durante un intervalo de tiempo Δt, entonces:

La aceleración media se define como


Iv movimiento rectil neo8

IV.MOVIMIENTO RECTILÍNEO

6.ACELERACIÓN INSTANTANEA .

La aceleración instantánea se obtiene llevando al límite la aceleración media cuando t tiende a cero es decir


Ejemplo 01

Ejemplo 01

  • La posición de una partícula que se mueve en línea recta está definida por la relación Determine: (a) la posición, velocidad y aceleración en t = 0; (b) la posición, velocidad y aceleración en t = 2 s; (c) la posición, velocidad y aceleración en t = 4 s ; (d) el desplazamiento entre t = 0 y t = 6 s;


Soluci n

Solución

  • La ecuaciones de movimiento son

  • Las cantidades solicitadas son

  • En t = 0, x = 0, v = 0, a = 12 m/s2

  • En t = 2 s, x = 16 m, v = vmax = 12 m/s, a = 0

  • En t = 4 s, x = xmax = 32 m, v = 0, a = -12 m/s2

  • En t = 6 s, x = 0, v = -36 m/s, a = 24 m/s2


V determinaci n del movimeinto de una part cula

V.DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

1.LA ACELERACIÓN COMO FUNCIÓN DEL TIEMPO a = f(t).

Se sabe que a = dv/dt, entonces podemos escribir


Determinaci n del movimeinto de una part cula

DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

2.LA ACELERACIÓN COMO FUNCIÓN DE LA POSICIÓN a = f(x).

Se sabe que a = vdv/ds, entonces podemos escribir


V determinaci n del movimeinto de una part cula1

V.DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

2.LA ACELERACIÓN COMO FUNCIÓN DE LA VELOCIDAD a = f(v).

Se sabe que a = dv/dt o también a = vdv/ds, entonces podemos escribir


V determinaci n del movimeinto de una part cula2

V.DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

4.LA ACELERACIÓN ES CONSTANTE a = constante

A este caso se le denomina movimiento rectilíneo uniforme y las ecuaciones obtenidas son


Ejemplo 011

Ejemplo 01

El auto mostrado en la figura se mueve en línea recta de tal manera que su velocidad para un período corto de tiempo es definida por pies/s, donde t es el tiempo el cual está en segundos . Determine su posición y aceleración cuando t = 3,00 s. Considere que cuando t = 0. S = 0


Soluci n1

Solución

POSICIÓNPara el sistema de referencia considerado y sabiendo que la velocidad es función del tiempo v = f(t). La posición es

Cuando t = 3 s, resulta

  • ACELERACIÓN. Sabiendo que v = f(t), la aceleración se determina a partir de a = dv/dt

  • Cuando t = 3 s


Ejemplo 02

Ejemplo 02

Un proyectil pequeño es disparado verticalmente hacia abajo dentro de un medio fluido con una velocidad inicial de 60 m/s. Si resistencia del fluido produce una desaceleración del proyectil que es igual a donde v se mide en m/s. Determine la velocidad v y la posición S cuatro segundos después de que se disparó el proyectil.


Soluci n2

Solución

Velocidad: Usando el sistema de referencia mostrado y sabiendo que a = f(v) podemos utilizar la ecuación a = dv/dt para determinar la velocidad como función del tiempo esto es

POSICIÓN: Sabiendo que v = f(t), la posición se determina a partir de la ecuación v = dS/dt


Ejemplo 03

Ejemplo 03

  • Una partícula metálica está sujeta a la influencia de un campo magnético tal que se mueve verticalmente a través de un fluido, desde la placa A hasta la placa B, Si la partícula se suelta desde el reposo en C cuando S = 100 mm, y la aceleración se mide como donde S está en metros. Determine; (a) la velocidad de la partícula cuando llega a B (S = 200 mm) y (b) el tiempo requerido para moverse de C a B


Soluci n3

Solución

  • Debido a que a = f(S), puede obtenerse la velocidad como función de la posición usando vdv = a dS. Consideramos además que v = 0 cuando S = 100 mm

  • La velocidad cuando S = 0,2 m es

  • El tiempo que demora en viajar la partícula de C a B se determina en la forma

  • Cuando S = 0,2 m el tiempo es


Ejemplo 04

Ejemplo 04

Desde una ventana situada a 20 m sobre el suelo se lanza una bola verticalmente hacia arriba con una velocidad de 10 m/s. Sabiendo que la bola todo el tiempo se encuentra sometida a un campo gravitacional que le proporciona una aceleración g = 9,81 m/s2 hacia abajo. Determine: (a) la velocidad y la altura en función del tiempo, (b) el instante en que la bola choca con el piso y la velocidad correspondiente


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

Solución


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

  • Remplazando el valor del tiempo obtenido se tiene.

Solución

Cuando la bola alcanza su altura máxima su velocidad es cero, entonces se tiene


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

  • Cuando la bola choca contra el suelo y = 0 Entoces tenemos.

Solución


Vi movimiento de varias particulas movimiento relativo

VI.MOVIMIENTO DE VARIAS PARTICULAS: Movimiento relativo

  • Sea A y B dos partículas que se mueven en línea recta como se ve en la figura. Sus posiciones respecto a O serán xAy xB. La posición relativa de B con respecto a A será.

  • La velocidad relativa d A con respecto a B será.

  • La aceleración relativa se expresa en la forma


Ejemplo 05

Ejemplo 05

  • Desde una altura de 12 m, en el interior de un hueco de un ascensor, se lanza una bola verticalmente hacia arriba con una velocidad de 18 m/s. En ese mismo instante un ascensor de plataforma abierta está a 5 m de altura ascendiendo a una velocidad constante de 2 m/s. Determine: (a) cuando y donde chocan la bola con el ascensor, (b) La velocidad de la bola relativa al ascensor en el momento del choque


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

  • SOLUCION:

  • Remplazando la posición, velocidadinicial y el valor de la aceleración de la bola en lasecuacionesgenerales se tiene.

  • La posición y la velocidad del ascensor será.


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

  • Escribiendo la ecuación para las posiciones relativas de la bola con respect al elevador y asumiendo que cuando chocan la posición relativa es nula, se tiene.

  • Remplazando el tiempo para el impacto en la ecuación de la posición del elevador y en la velocidad relativa de la bola con respecto al ascensor se tiene


Vi movimiento de varias particulas movimiento dependiente

VI.MOVIMIENTO DE VARIAS PARTICULAS: Movimiento dependiente

  • La posición de una partícula puede depender de la posición de otra u otras partículas.

  • En la figura la posición de B depende de la posición de A.

  • Debido a que la longitud del cable ACDEFG que une ambos bloques es constante se tiene

Debido a que sólo una de las coordenadas de posición xA o xB puede elegirse arbitrariamente el sistema posee un grado de libertad


Vi movimiento de varias particulas movimiento dependiente1

VI.MOVIMIENTO DE VARIAS PARTICULAS: Movimiento dependiente

  • Aquí la posición de una partícula depende de dos posiciones más.

  • En la figura la posición de B depende de la posición de A y de C

  • Debido a que la longitud del cable que une a los bloques es constante se tiene

Como solo es posible elegir dos de las coordenadas, decimos que el sistema posee DOS grados de libertad


Ejemplo 06

Ejemplo 06

  • El collar A y el bloque B están enlazados como se muestra en la figura mediante una cuerda que pasa a través de dos poleas C, D y E. Las poleas C y E son fijas mientras que la polea D se mueve hacia abajo con una velocidad constante de 3 pul/s. Sabiendo que el collar inicia su movimiento desde el reposo cuando t = 0 y alcanza la velocidad de 12 pulg/s cuando pasa por L, Determine la variación de altura, la velocidad y la aceleración del bloque B cuando el collar pasa por L


Soluci n4

Solución

  • Se analiza en primer lugar el movimiento de A.

  • El collar A tiene un MRUV, entonces se determina la aceleración y el tiempo


Soluci n5

Solución

  • Como la polea tiene un MRU se calcula el cambio de posición en el tiempo t.

  • El movimiento del bloque B depende del movimiento de collar y la polea. El cambio de posición de B será


Soluci n6

Solución

  • Derivando la relación entre las posiciones se obtiene las ecuaciones para la velocidad y la aceleración


Ejemplo 07

Ejemplo 07

La caja C está siendo levantada moviendo el rodillo A hacia abajo con una velocidad constante de vA =4m/s a lo largo de la guía. Determine la velocidad y la aceleración de la caja en el instante en que s = 1 m . Cuando el rodillo está en B la caja se apoya sobre el piso.


Soluci n7

Solución

  • La relación de posiciones se determina teniendo en cuenta que la longitud del cable que une al bloque y el rodillo no varia.

  • Cuando s = 1 m, la posición de la caja C será

  • Se determina ahora la posición xA, cuando s = 1 m


Soluci n8

Solución

  • La velocidad se determina derivando la relación entre las posiciones con respecto al tiempo

  • La aceleración será


Ejemplo 08

Ejemplo 08

El sistema representado parte del reposo y cada componente se mueve a aceleración constante. Si la aceleración relativa del bloque C respecto al collar B es 60 mm/s2hacia arriba y la aceleración relativa del bloque D respecto al bloque A es 110 mm/s2hacia abajo. Halle: (a) la aceleración del bloque C al cabo de 3 s, (b) el cambio de posición del bloque D al cabo de 5 s


Ejemplo 09

Ejemplo 09

Un hombre en A está sosteniendo una caja S como se muestra en la figura, caminando hacia la derecha con una velocidad constante de 0,5 m/s. Determine la velocidad y la aceleración cuando llega al punto E. La cuerda es de 30 m de longitud y pasa por una pequeña polea D.


Resoluci n gr fica de problemas en el movimiento rectil neo

Resolución gráfica de problemas en el movimiento rectilíneo

  • La velocidad y la aceleración en el movimiento rectilíneo están dadas por las ecuaciones,

  • La primera ecuación expresa que la velocidad instantánea es igual a la pendiente de la curva en dicho instante.

  • La segunda ecuación expresa que la aceleración es igual a la pendiente de la curva v-t en dicho instante


Vii resoluci n gr fica de problemas en el movimiento rectil neo

VII.Resolución gráfica de problemas en el movimiento rectilíneo

  • Integrando la ecuación de la velocidad tenemos

  • El área bajo la gráfica v-tentre t1y t2es igual al desplazamiento neto durante este intervalo de tiempo

  • El área bajo la gráfica a-t entre t1y t2es igual al cambio neto de velocidades durante este intervalo de tiempo


Otros m todos gr ficos

Otros métodos gráficos

  • El momento de área se puede utilizar para determinar la posición de la partícula en cualquier tiempo directamente de la curva v-t:

usando dv = a dt ,

Momento de primer orden de area bajo la curva a-t con repecto a la línea t = t1


Otros m todos gr ficos1

Otros métodos gráficos

  • Método para determinar la aceleración de una partícula de la curva v-x


Ejemplo 10

EJEMPLO 10

  • Un ciclista se mueve en línea recta tal que su posición es descrita mediante la gráfica mostrada. Construir la gráfica v-t y a-t para el intervalo de tiempo 0≤ t ≤ 30 s


Ejemplo 11

EJEMPLO 11

Un carro de ensayos parte del reposo y viaja a lo largo de una línea recta acelerando a razón constante durante 10 s. Posteriormente desacelera a una razón constante hasta detenerse. Trazar las gráficas v-t y s-t y determinar el tiempo t’ que emplea en detenerse


Soluci n grafica v t

Solución: Grafica v - t

La gráfica velocidad-tiempo puede ser determinada mediante integración de los segmentos de recta de la gráfica a-t. Usando la condición inicial v = 0 cuando t = 0

Cuando t = 10 s, v = 100 m/s usando esto como condición inicial para el siguiente tramo se tiene

Cuando t = t´, la velocidad nuevamente es cero por tanto se tiene

0= -2t’ + 120

t’ = 60 s


Soluci n grafica s t

Solución: Grafica s - t

La gráfica posición-tiempo puede ser determinada mediante integración de los segmentos de recta de la gráfica v-t. Usando la condición inicial s = 0 cuando t = 0

Cuando t = 10 s, S = 500 m usando esto como condición inicial para el siguiente tramo se tiene

Cuando t = t´, la posición

S = 3000 m


Ejemplo 12

Ejemplo 12

La gráfica v-t, que describe el movimiento de un motociclista que se mueve en línea recta es el mostrado en la figura. Construir el gráfico a-s del movimiento y determinar el tiempo que requiere el motociclista para alcanzar la posición S = 120 m


Soluci n9

Solución

Grafico a-s.

Debido a que las ecuaciones de los segmentos de la gráfica están dadas, la gráfica a-t puede ser determinada usando la ecuación dv = a ds


Soluci n10

Solución

Calculo del tiempo.

El tiempo se obtiene usando la gráfica v-t y la ecuación v = ds/dt. Para el primer tramo de movimiento, s = 0, t = 0

Cuando s = 60 m, t = 8,05 s


Soluci n11

Solución

Calculo del tiempo.

Para el segundo tramo de movimiento

Cuando S = 120 m, t´= 12 s


Ejemplo 13

Ejemplo 13

Una partícula parte del reposo y se mueve describiendo una línea recta, su aceleración de 5 m/s2dirigida hacia la derecha permanece invariable durante 12 s. A continuación la aceleración adquiere un valor constante diferente tal que el desplazamiento total es 180 m hacia la derecha y la distancia total recorrida es de 780 m. Determine: (a) la aceleración durante el segundo intervalo de tiempo, (b) el intervalo total de tiempo.


Soluci n12

Solución

Como la aceleración es la pendiente de la curva v-t, tenemos

En la figura se muestra el gráfico velocidad-tiempo , ya que a = constante.

La distancia total es la suma de las áreas en valor absoluto


Soluci n13

Solución

Sumando las ecuaciones (2) y (3), resulta

La aceleración en el segundo intervalo tiempo es

El desplazamiento viene expresado por


Soluci n14

Solución

Se determina t3

Remplazando la ec. (4) y (6) en (3) se tiene

El intervalo total de tiempo será


Ejemplo 14

Ejemplo 14

Un cuerpo se mueve en línea recta con una velocidad cuyo cuadrado disminuye linealmente con el desplazamiento entre los puntos A y B los cuales están separados 90 m tal como se indica. Determine el desplazamiento Δx del cuerpo durante los dos últimos segundos antes de llegar a B.


Poblemas propuestos

Poblemas propuestos

1.El movimiento de una partícula se define por la relación donde x se expresa en metros y t en segundos. Determine el tiempo, la posición y la aceleración cuando la velocidad es nula.

2.El movimiento de una partícula se define mediante la relación donde x se expresa en pies y t en segundos. Determine: (a) el tiempo en el cual la velocidad es cero, (b) La posición y la distancia total recorrida cuando t = 8 s


Problemas propuestos

Problemas propuestos

3.La aceleración de una partícula se define mediante la relación . La partícula parte de x = 25 pulg en t = 0 con v = 0. Determine: (a) el tiempo en el cual la velocidad de nuevo es cero; (b) la posición y la velocidad cuando t = 5 s, (c) La distancia total recorrida por la partícula desde t = 0 a t = 5 s.

4.La aceleración de una partícula está definida por la relación a = -3v, con a expresada en m/s2 y v en m/s. Sabiendo que para t = 0 la velocidad es 60 m/s, determine: (a) la distancia que la partícula viajará antes de detenerse, (b) el tiempo necesario para que la partícula se reduzca al1% de su valor inicial


Problemas propuestos1

Problemas propuestos

5.El bloque A tiene una velocidad de 3,6 m/s hacia la derecha. Determine la velocidad del cilindro B

6.Los collares A y B deslizan a lo largo de las barrar fija que forman un ángulo recto y están conectadas por un cordón de longitud L. Determine la aceleración ax del collar B como una función de y si el collar A se mueve con una velocidad constante hacia arriba vA


Problemas propuestos2

Problemas propuestos

7.Una partícula que se mueve a lo largo del eje x con aceleración constante , tiene una velocidad de 1,5 m/s en el sentido negativo de las x para t = 0, cuando su coordenada x es 1,2 m. tres segundos más tarde el punto material pasa por el origen en el sentido positivo. ¿Hasta qué coordenada negativa se ha desplazado dicha partícula?.

8.Determine la rapidez vP a la cual el punto P localizado sobre el cable debe viajar hacia el motor M para levantar la plataforma A a razón de vA = 2 m/s.


Problemas propuestos3

Problemas propuestos

9.Determine la velocidad del bloque A si el bloque B tiene una velocidad de 2 m/s hacia arriba

10. Determine la velocidad del bloque A si el bloque B tiene una velocidad de 2 m/s hacia arriba


Problemas propuestos4

Problemas propuestos

10.Determine la velocidad con la cual el bloque asciende si el extremo del cable en A es halado hacia abajo con velocidad de 2 m/s hacia abajo

11.


Problemas propuestos5

Problemas propuestos

  • Para levantar el embalaje mostrado mediante el aparejo se usa un tractor. Si el tractor avanza con una velocidad vA. Determine una expresión para la velocidad ascendente vB del embalaje en función de x. Desprecie la pequeña distancia entre el tractor y su polea de modo que ambos tengan la misma velocidad.


Viii movimiento curvil neo

VIII.MOVIMIENTO CURVILÍNEO

Se dice que una partícula tiene un movimiento curvilíneo cuando su trayectoria descrita esta es una línea curva.


Viii movimiento curvil neo1

VIII.MOVIMIENTO CURVILÍNEO

OBJETIVOS

Describir el movimiento de una partícula que viaja a lo largo de una trayectoria curva

Expresar las cantidades cinemáticas en coordenadas rectangulares, componentes normal y tangencial, así como radial y transversal


Viii movimiento curvil neo2

VIII.MOVIMIENTO CURVILÍNEO

Se dice que una partícula tiene un movimiento curvilíneo cuando su trayectoria descrita esta es una línea curva.


Viii movimiento curvil neo3

VIII.MOVIMIENTO CURVILÍNEO

Vector Posición: Es aquel vector dirigido desde el origen de un sistema coordenado hacia el punto de ubicación instantánea P la partícula. Se representa por r = r(t).


Viii movimiento curvil neo4

VIII.MOVIMIENTO CURVILÍNEO

2.Vector Desplazamiento: Supongamos ahora que la partícula se mueve durante un pequeño intervalo de tiempo t hasta el punto P’, entonces su posición será r’ (t + ). El desplazamiento es vector dirigido desde P a P’ y se expresa


Viii movimiento curvil neo5

VIII.MOVIMIENTO CURVILÍNEO

3.Velocidad Media: Cuando la partícula se mueve de P a P’ experimenta un desplazamiento r en un intervalo de tiempo t. la velocidad media se define como

  • La velocidad media es un vector que tiene la misma dirección que el desplazamiento es decir es secante a la curva.

  • La velocidad media depende del intervalo de tiempo.


Viii movimiento curvil neo6

VIII.MOVIMIENTO CURVILÍNEO

4.Velocidad Instantánea: Si el intervalo de tiempo se hace cada ves más pequeño (t0), el desplazamiento también tiende a cero. Llevando al límite la velocidad media se obtiene la velocidad instantánea. Es decir.

  • La velocidad instantánea es un vector tangente a la trayectoria.


Viii movimiento curvil neo7

VIII.MOVIMIENTO CURVILÍNEO

3.Velocidad Instantánea:

Multiplicando y dividiendo la expresión anterior por la longitud del arco s = acrPQ, obtenemos

A medida que Q se acerca a P la magnitud de r se aproxima a s, entonces se tiene

Además se tiene


Viii movimiento curvil neo8

VIII.MOVIMIENTO CURVILÍNEO

5.Aceleración media: En la figura se observa las velocidades instantáneas de la partícula en P y Q. El cambio de velocidades durante t es v. La aceleración media es el cambio de velocidades en el intervalo de tiempo. Es decir

La aceleración media es un vector paralelo a v y también depende de la duración del intervalo de tiempo


Viii movimiento curvil neo9

VIII.MOVIMIENTO CURVILÍNEO

3.Aceleración media: En la figura se observa las velocidades instantáneas de la partícula en P y Q. El cambio de velocidades durante t es v. La aceleración media es el cambio de velocidades en el intervalo de tiempo. Es decir

La aceleración media es un vector paralelo a v y también depende de la duración del intervalo de tiempo


Viii movimiento curvil neo10

VIII.MOVIMIENTO CURVILÍNEO

6.Aceleración instantánea: Se obtiene llevando al límite la aceleración media es decir haciendo cada ves mas y mas pequeños los intervalos de tiempo

La aceleración instantánea es un vector que tiene misma dirección que el cambio instantáneo de la velocidad es decir apunta hacia la concavidad de la curva


8 1 componentes rectangulares de la velocidad y la aceleraci n

8.1COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

1.POSICIÓN. La posición instantánea de una partícula en componentes x, y, z es

Las coordenadas x, y, z son funciones del tiempo: x = f(t), y = f(t), z = f(t)

La magnitud del vector de posición será


8 1 componentes rectangulares de la velocidad y la aceleraci n1

8.1.COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

2.Desplazamiento. Si una partícula se mueve de P a P en un intervalo de tiempo t. El desplazamiento está dado por:


8 1 componentes rectangulares de la velocidad y la aceleraci n2

8.1.COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

3.Velocidad media. Si una partícula se mueve de P a P’ experimenta un desplazamiento r en un intervalo de tiempo t. La velocidad media será

Es un vector secante a la trayectoria


8 1 componentes rectangulares de la velocidad y la aceleraci n3

8.1.COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

4.Velocidad instantánea. Se obtiene llevando al límite cuando t  0, la velocidad media es decir:

Es un vector tangente a la curva y tiene una magnitud definida por


8 1 componentes rectangulares de la velocidad y la aceleraci n4

8.1COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

5.Aceleración media. Cuando la partícula cambia de posición su velocidad tambien cambia. Entonces la aceleración media será

Es un vector que se encuentra dirigido a lo largo del cambio de velocidades


8 1 componentes rectangulares de la velocidad y la aceleraci n5

8.1COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

5.Aceleración instantanea. Se obtiene llevando al límite la aceleración media.

Es un vector que se encuentra dirigido hacia la concavidad de la curva y su magnitud es


Ejemplo

Ejemplo

En cualquier instante la posición horizontal del globo meteorológico está definida por x = (9t) m, donde t es el segundo. Si la ecuación de la trayectoria es y = xª/30, donde a = 2: Determinar la distancia del globo a la estación A, la magnitud y la dirección de la velocidad y de la aceleración cuando t = 2 s


Soluci n15

Solución

  • Cuando t = 2 s, la posición del globo es

  • La distancia en línea recta será

  • Las componentes de la velocidad son

  • La magnitud y dirección de la velocidad para t = 2 s son


Soluci n16

Solución

Las componentes de la aceleración será

La magnitud y dirección de la aceleración son


Ejemplo1

Ejemplo

El movimiento de la caja B está definida por el vector de posición

donde t esta en segundos y el argumento para el seno y el coseno está en radianes.Determine la localización de la caja cuando t = 0,75 s y la magnitud de su velocidad y aceleración en este instante


Soluci n17

Solución

  • La posición de la partícula cuando t = 0,75 s es

  • La distancia medida desde el origen será

  • La dirección es


Soluci n18

Solución

  • La velocidad de la partícula cuando t = 0,75 s es

  • La aceleración de la partícula cuando t = 0,75s

    a = 2 m/s2


Ejemplo2

Ejemplo

  • Los movimientos x e y de las guías A y B, cuyas ranuras forman un ángulo recto, controlan el movimiento del pasador de enlace P, que resbala por ambas ranuras. Durante un corto intervalo de tiempo esos movimientos están regidos por

    donde x e y están en milímetros y t en segundos. Calcular los módulos de las velocidad y de la aceleración a del pasador para t = 2 s. esquematizar la forma de la trayectoria e indicar su curvatura en ese instante.


Ejemplo3

Ejemplo

  • El rodillo A de la figura está restringido a deslizar sobre la trayectoria curva mientras se desplaza en la ranura vertical del miembro BC. El miembro BC se desplaza horizontalmente. (a) Obtenga las ecuaciones para la velocidad y la aceleración de A, exprésela en términos de

    (b) Calcule la velocidad y la aceleración cuando


8 2 movimiento curvilineo plano

8.2.MOVIMIENTO CURVILINEO PLANO

Es aquel movimiento que se realiza en un solo plano.


8 3 movimiento parab lico

8.3.MOVIMIENTO PARABÓLICO

Es caso mas simple del movimiento plano, en el cual ax = 0 y ay = - g = - 9,81 m/s2 =-32,2 pies/s2. En la figura se muestra este movimiento y su trayectoria


8 3 1 movimiento parab lico hip tesis

8.3.1.MOVIMIENTO PARABÓLICO: Hipótesis

Para analizar este movimiento se usa las siguientes hipótesis

(a) El alcance del proyectil es suficientemente pequeño como para poder despreciar la curvatura de la superficie terrestre (la aceleración gravitatoria g es normal a dicha superficie);

(b) La altura que alcanza el proyectil es suficientemente pequeña como para poder despreciar la variación del campo gravitatorio (aceleración de la gravedad) terrestre con la altura;

(c) La velocidad del proyectil es suficientemente pequeña como para poder despreciar la resistencia que presenta el aire al movimiento del proyectil y

(d) No tendremos en cuenta el efecto de rotación de la Tierra que, como veremos más adelante, tiende a desviar el proyectil hacia la derecha de su trayectoria cuando el movimiento tiene lugar en el hemisferio Norte.


Diagrama del movimiento de un proyectil

DIAGRAMA DEL MOVIMIENTO DE UN PROYECTIL


8 3 2 movimiento parab lico ecuaciones

8.3.2MOVIMIENTO PARABÓLICO: ecuaciones

Movimiento horizontal. Debido a que ax = 0


8 3 2 movimiento parab lico ecuaciones1

8.3.2.MOVIMIENTO PARABÓLICO: ecuaciones

Movimiento vertical: Debido a que ay = - g = -9,81 m/s2


8 3 2 movimiento parab lico altura m xima y alcance alcanzado por el proyectil

8.3.2.MOVIMIENTO PARABÓLICO: Altura máxima y alcance alcanzado por el proyectil

Cuando se estudia el movimiento de proyectiles, dos características son de especial interés.

El alcance R, es la máxima distancia horizontal alcanzada por el proyectil

2.La altura máxima h alcanzada por el proyectil


8 3 2 movimiento parab lico alcance alcanzado por el proyectil

8.3.2.MOVIMIENTO PARABÓLICO: alcance alcanzado por el proyectil

El máximo alcance es logrado cuando el ángulo de lanzamiento es 45°


Ejemplo4

Ejemplo

Un saco desliza por una rampa saliendo de su extremo con una velcoidad de 12 m/s. Si la altura de la rampa es 6 m desde el piso. Determine el tiempo necesario para que saco impacte contra el piso y la distancia horizontal R que avanza


Ejemplo5

Ejemplo

La máquina de picar está diseñada para extraer madera en trozos y lanzarlos con una velocidad vo = 7,5 m / s. Si el tubo se orienta a 30° respecto a la horizontal como se muestra en la figura, determinar qué tan alto se apilarán los trozos de madera, si la distancia del apilamiento a la salida es 6 m


Ejemplo6

Ejemplo

La pista de carreras de este evento fue diseñado para que los pilotos puedan saltar de la pendiente de 30°, desde una altura de 1m. Durante la carrera, se observó que el conductor permaneció en el aire 1,5 s. Determine la velocidad de salida de la pendiente, la distancia horizontal alcanzada y la altura máxima que se eleva el piloto y su moto. Desprecie el tamaño de ambos.


Ejemplo7

Ejemplo

Un jugador de basquetbol lanza una pelota de baloncesto según el ángulo de θ = 50° con la horizontal. Determine la rapidez v0 a la cual se suelta la pelota para hacer el enceste en el centro del aro. ¿Con qué rapidez pasa la pelota a través del aro?.


Ejemplo8

Ejemplo

Un bombero desea saber la altura máxima de la pared a la cual puede proyectar el agua mediante el uso de la manguera. ¿A qué ángulo, θ, respecto de la horizontal debe inclinar la boquilla para lograr el objetivo?


Ejemplo9

Ejemplo

La moto de nieve mostrada en la figura sale de la rampa con una rapidez de 15 m/s bajo un ángulo de 40°respecto a la horizontal y aterriza en el punto B. Determine la distancia horizontal R que viaja y el tiempo que permanece en el aire


Ejemplo10

Ejemplo

El esquiador sale de la rampa formando un ángulo de θA = 25° y aterriza en el punto B de la pendiente. Determine la velocidad inicial del esquiador y el tiempo que permanece en el aire


Ejemplo11

Ejemplo

  • El hombre lanza una pelota con una velocidad inicial v0 = 15 m/s . Determine el ángulo θ bajo el cual podría lanzar la pelota del tal manera que choque contra la valla en un punto de máxima altura posible. El gimnasio tiene una altura de 6 m.


8 4 componentes tangencial y normal 8 4 1 objetivos

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.1.OBJETIVOS

  • Determinar las componentes normal y tangencial de la velocidad y la aceleración de una partícula que se encuentra moviéndose en un trayectoria curva.


8 4 componentes tangencial y normal 8 4 1 aplicaciones

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.1.APLICACIONES

  • Cuando un auto se mueve en una curva experimenta una aceleración, debido al cambio en la magnitud o en la dirección de la velocidad.

  • ¿Podría Ud. preocuparse por la aceleración del auto?.

  • Si el motociclista inicia su movimiento desde el reposo e incrementa su velocidad a razón constante. ¿Cómo podría determinar su velocidad y aceleración en la parte más alta de su trayectoria.


8 4 componentes tangencial y normal 8 4 3 posici n

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.3.POSICIÓN

El eje t es tangente a la trayectoria y positivo en la dirección del movimiento y el eje n es perpendicular al eje t y esta dirigido hacia el centro de curvatura

Cuando la trayectoria de una partícula es conocida, a veces es conveniente utilizar las coordenadas normal (n) y tangencial (t) las cuales actúan en las direcciones normal y tangencial a la trayectoria.

En un movimiento plano se utilizan las vectores unitarios uty un

El origen se encuentra ubicado sobre la trayectoria de la partícula.


8 4 componentes tangencial y normal 8 4 3 posici n1

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.3.POSICIÓN

En un movimiento plano las direcciones n y t se encuentran definidas por los vectores unitarios uty un

El radio de curvatura ρ, es la distancia perpendicular desde curva hasta el centro de curvatura en aquel punto.

La posición es la distancia S medida sobre la curva a partir de un punto O considerado fijo


8 4 componentes tangencial y normal 8 4 4 velcoidad

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.4.VELCOIDAD

Debido a que la partícula se esta moviendo, la posición S está cambiando con el tiempo.

La velocidad v es un vector que siempre es tangente a la trayectoria y su magnitud se determina derivando respecto del tiempo la posición S = f(t). Por lo tanto se tiene


8 4 componentes tangencial y normal 8 4 4 aceleraci n

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.4. ACELERACIÓN

Consideremos el movimiento de una partícula en una trayectoria curva plana

En el tiempo t se encuentra en P con una velocidad v en dirección tangente y una aceleración a dirigida hacia la concavidad de la curva. La aceleración puede descomponerse en una componente tangencial at (aceleración tangencial) paralela a la tangente y otra paralela a la normal an(aceleración normal)

La aceleración tangencial es la responsable del cambio en el modulo de la velocidad

La aceleración normal es la responsable del cambio en la dirección de la velocidad


8 4 componentes tangencial y normal 8 4 4 aceleraci n1

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.4. ACELERACIÓN

Tracemos en A un vector unitario . La aceleración será

Si la trayectoria es una recta, el vector sería constante en magnitud y dirección, por tanto

Pero cuando la trayectoria es curva la dirección de cambia por lo tanto


8 4 componentes tangencial y normal 8 4 4 aceleraci n2

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.4. ACELERACIÓN

Introduzcamos el vector unitario normal a la curva y dirigido hacia el lado cóncavo de la curva. Sea β el ángulo que forma la tangente en A con el eje x. Entonces se tiene

La derivada del vector unitario tangente será


8 4 componentes tangencial y normal 8 4 4 aceleraci n3

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.4. ACELERACIÓN

  • Por otro lado se tiene que

  • Donde dS es el pequeño arco a lo largo del movimiento en un dt.

  • Las normales a la curva en A y A´ se intersecan en C. Entonces

  • La razón de cambio del vector unitario tangencial es


8 4 componentes tangencial y normal 8 4 4 aceleraci n4

8.4COMPONENTES TANGENCIAL Y NORMAL8.4.4. ACELERACIÓN

Remplazando esta ecuación en la aceleración se tiene

Es decir las aceleraciones tangencial y normal se escriben

  • La magitud de la aceleración total será


Casos especiales

CASOS ESPECIALES

1.La partícula se mueve a lo largo de una línea recta

r => an = v2/r = 0 => a = at = v

La componente tangencial representa la razón de cambio de la magnitud de la velocidad

2.La partícula se mueve en la curva a velocidad constante

at = v = 0 => a = an = v2/r

La componente normal representa la razón de cambiode la dirección de la velocidad


Universidad nacional santiago ant nez de mayolo facultad de ingenier a civil curso fisica i cinematica de una

CASOS ESPECIALES

  • 3) La componentetangencial de la aceleracónesconstante, at= (at)c.

  • Soand vo son la posición y la velocidad de la partícula en t = 0

  • La partícula se mueve a lo largo de la rayectoria dada por y = f(x). Entonces el radio de curvaturaes


Ejemplo 012

Ejemplo 01

  • Un esquiador viaja con una rapidez de 6 m/s la se está incrementando a razón de 2 m/s2, a lo largo de la trayectoria parabólica indicada en la figura. Determine su velocidad y aceleración en el instante que llega a A. Desprecie en los cálculos el tamaño del esquiador.


Soluci n19

Solución

  • Estableciendo los ejes n y t mostrados se tiene.

  • La velocidad de 6 m/s es tangente a la trayectoria y su dirección será

  • Por lo tanto en A la velocidad forma 45° con el eje x


Soluci n20

Solución

  • La aceleración se determina aplicando la ecuación

  • Para ello se determina el radio de curvatura


Soluci n21

Solución

  • La magnitud y la dirección de la aceleración serán


Ejemplo 021

Ejemplo 02

  • Un carro de carreras C viaja alrededor de una pista horizontal circular que tiene un radio de 90 m. Si el carro incrementa su rapidez a razón constante de 2,1 m/s2 partiendo desde el reposo, determine el tiempo necesario para alcanzar una aceleración de 2,4 m/s2. ¿Cuál es su velocidad en ese instante.


Soluci n22

Solución

  • Se sabe que la aceleración tangencial es constante e igual a

  • La aceleración normal será

  • La aceleración total será

  • La velocidad en este instante será


Ejemplo 031

Ejemplo 03

Una caja parte del reposo en A e incrementa su rapidez a razón de at = (0.2t) m/s2 y viaja a lo largo de la pista horizontal mostrada. Determine la magnitud y dirección de la aceleración cuando pasa por B


Ejemplo 032

Ejemplo 03

La posición de la caja en cualquier instante es S medida a partir del punto fijo en A.

La velocidad en cualquier instante se determina a partir de la aceleración tangencial, esto es


Ejemplo 033

Ejemplo 03

Para determinar la velocidad en B, primero es necesario determinar S = f(t), después obtener el tiempo necesario para que la caja llegue a B. es decir

De la geometría se tiene sB= 3 + 2π(2)/4 = 6.142 m.

Entonces tenemos


Ejemplo 034

Ejemplo 03

Remplazando el tiempo en las ecuaciones (1) y (2) resulta

En el punto B el radio de curvatura es ρ = 2 m, entonces la aceleración será

La aceleración total será

Su modulo y dirección serán


Ejemplo 041

Ejemplo 04

Una partícula se mueve en una trayectoria curva de tal manera que en cierto instante tiene una velocidad v y una aceración a. Demuestre que el radio de curvatura puede obtenerse a partir de la ecuación


Ejemplo 042

Ejemplo 04

Sabemos que la aceleración en cualquier instante es

Multiplicando ambos miembros por la velocidad v tenemos

Debido a que la aceleración tangencial son colineales su producto vectorial es nulo. Entonces tenemos

Remplazado la aceleración normal tenemos


Ejemplo12

Ejemplo


Ejemplo13

Ejemplo


Ejemplo14

Ejemplo


Ejemplo15

Ejemplo

  • Partiendo desde el reposo, un bote a motor viaja alrededor de una trayectoria circular de radio r = 50 m con una velocidad . Determine la magnitud de la velocidad y de la aceleración del bote en t = 3 s.


Ejemplo16

Ejemplo

  • Un avión viaja a lo largo de una trayectoria parabólica vertical . En el punto A el avión tiene una velocidad de 200 m/s la cual se incrementa a razón de 0,8 m/s2. Determine la magnitud de la aceleración del avión cuando pase por A.


Ejemplo17

Ejemplo

  • El jugador de béisbol lanza una pelota con una velocidad inicial de v0 = 30 m/s a un ángulo θ = 30° como se muestra en la figura. Hallar el radio de curvatura de la trayectoria: (a) inmediatamente después del lanzamiento y (b) en el vértice. Calcular en cada caso, la variación de celeridad por unidad de tiempo.


Analisis del movimiento relativo de dos particulas usando ejes en traslaci n

ANALISIS DEL MOVIMIENTO RELATIVO DE DOS PARTICULAS USANDO EJES EN TRASLACIÓN

  • Hasta ahora se ha estudiado el movimiento absoluto de una partícula usando un marco de referencia fijo.

  • Sin embargo, existen ejemplos en el que la trayectoria del movimiento de una partícula es complicada, de modo que es más factible analizar el movimiento en partes usando dos o más marcos de referencia.

  • Por ejemplo, el movimiento de una partícula localizada en la hélice de un avión , mientras éste está en vuelo , es más fácil describirlo si observamos primero el movimiento del avión a partir de un sistema de referencia fijo y después se superpone vectorialmente el movimiento circular de la partícula medida a partir de un marco de referencia móvil unido al aeroplano.


Analisis del movimiento relativo de dos particulas usando ejes en traslaci n1

ANALISIS DEL MOVIMIENTO RELATIVO DE DOS PARTICULAS USANDO EJES EN TRASLACIÓN

  • En esta sección nos ocuparemos del estudio del movimiento solo a marcos de referencia en traslación. El análisis del movimiento relativo de partículas usando marcos de referencia en rotación se tratará en el curso de Dinámica.


Movimiento relatico posici n

MOVIMIENTO RELATICO: POSICIÓN

  • Consideremos dos partículas A y B moviéndose en las trayectorias mostradas

  • Las posiciones absolutas de A y B con respecto al observador fijo en el marco de referencia OXYZ serán

  • El observador B sólo experimenta traslación y se encuentra unidos al sistema de referencia móvil Oxyz

  • La posición relativa de A con respecto al observador B , es


Movimiento relativo velocidad

Movimiento relativo: Velocidad

  • Derivando la ecuación de la posición relativa se tiene


Movimiento relativo aceleraci n

Movimiento relativo: Aceleración

  • Derivando la ecuación de la velocidad relativa se tiene


Ejemplo 013

Ejemplo 01

  • Un tren T, viajando a una velocidad constante de 90 km/ h, cruza una carretera, como se muestra en la figura. Si el automóvil A está viajando por la carretera con una velocidad de 67,5 km/h. Determine la magnitud y dirección de la velocidad relativa del tren con respecto al auto.


Soluci n23

SOLUCIÓN

  • La velocidad relativa es medida desde el observador ubicado en el auto al cual se le asocial el sistema de referencia OX’Y’,

  • Como las velocidades de T y A son conocidas, entonces la velocidad relativa se obtiene de


Soluci n24

solución

  • La magnitud de la velocidad relativa será

  • La dirección de la velocidad relativa es


Soluci n25

solución

  • Dos aviones están volando horizontalmente a la misma elevación, como se indica en la figura. El avión A está volando en una trayectoria recta, y en el instante mostrado desarrolla una velocidad de 700 km/h y una aceleración de 50 km/h2. El avión B está volando en una trayectoria curva circular de 400km de radio con una rapidez de 600 km/h y está decreciendo su rapidez a razón de 100 km/h2. Determine la velocidad y la aceleración relativa de B medida por el piloto A


Soluci n26

Solución

  • Al avión A esta moviéndose rectilíneamente y se asocia un marco de referencia móvil Ox’y’.

  • La velocidad relativa de B respecto de A es

  • El avión B tiene aceleración normal y tangencial pues se mueve en una curva.

  • La aceleración normal será

  • Aplicando la ecuación para determinar la aceleración relativa se tiene


Soluci n27

Solución

  • En un determinado instante los carros A y B están viajando con velocidades de 18m/s y 12m/s, respectivamente. Además en dicho instante la velocidad de A está disminuyendo a razón de 2m/s2 y B experimenta un incremento de su velocidad a razón de 3 m/s2. Determine la velocidad y la aceleración de B con respecto de A


Soluci n28

Solución

  • El sistema de referencia fijo está en tierra y el marco móvil en el auto A. Por tanto se tiene

  • La dirección de la velocidad relativa será

  • La aceleración normal será

  • La aceleración relativa será

  • Su dirección será


Ejemplo18

Ejemplo

  • Los pasajeros que viajan en el avión A que vuela horizontalmente a velocidad constante de 800 km/h observan un segundo avión B que pasa por debajo del primero volando horizontalmente. Aunque el morro de B está señalando en la dirección en la dirección 45°noreste, el avión B se presenta a los pasajeros de A como separándose de éste bajo el ángulo de 60° representado. Halle la velocidad verdadera de B


Soluci n29

Solución

  • El marco móvil está asociado al avión A donde se efectúan las observaciones relativas

  • La velocidad de A es conocida en módulo y dirección, el ángulo de 60° de la velocidad relativa de B respecto de A es conocido y la velocidad verdadera de B tiene una dirección de 45°. Entonces tenemos.

  • Aplicando estas ecuaciones en la velocidad relativa se tiene

  • Resolviendo estas ecuaciones se obtiene


  • Login