B i 3 c c ph n ph i x c su t th ng g p l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 52

Bài 3 Các phân phối xác suất thường gặp PowerPoint PPT Presentation


  • 125 Views
  • Uploaded on
  • Presentation posted in: General

Bài 3 Các phân phối xác suất thường gặp. Phân phối nhị thức. Phép thử Bernoulli Xét một thí nghiệm chỉ có 2 khả năng xảy ra: “thành công” hoặc “thất bại”. Thành công với xác suất p. Thất bại với xác suất 1-p. Thí nghiệm như vậy gọi là phép thử Bernoulli, ký hiệu B(1,p).

Download Presentation

Bài 3 Các phân phối xác suất thường gặp

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


B i 3 c c ph n ph i x c su t th ng g p l.jpg

Bài 3Các phân phối xác suất thường gặp


Ph n ph i nh th c l.jpg

Phân phối nhị thức

  • Phép thử Bernoulli

    Xét một thí nghiệm chỉ có 2 khả năng xảy ra: “thành công” hoặc “thất bại”.

    Thành công với xác suất p.

    Thất bại với xác suất 1-p.

    Thí nghiệm như vậy gọi là phép thử Bernoulli, ký hiệu B(1,p).


Ph n ph i nh th c3 l.jpg

Phân phối nhị thức

  • Phép thử Bernoulli – ví dụ.

    Tung đồng xu: hình / số.

    Mua vé số: trúng / không trúng.

    Trả lời ngẫu nhiên 1 câu trắc nghiệm: đúng / sai.

    Kiểm tra ngẫu nhiên hàng hóa: tốt / xấu.


Ph n ph i nh th c4 l.jpg

Phân phối nhị thức

  • Phân phối nhị thức

    Thực hiện phép thử Bernoulli B(1,p) n lần độc lập.

    Đặt

    X = “Số lần thành công trong n lần thí nghiệm”

    X = 0, 1, 2, …, n.

    X có phân phối nhị thức với tham số p.

    Ký hiệu: X ~ B(n,p).


Ph n ph i nh th c5 l.jpg

Phân phối nhị thức

  • Công thức

    Xét X ~ B(n,p)


Ph n ph i nh th c6 l.jpg

Phân phối nhị thức

  • Ví dụ

    Cho X ~ B(5,0.1)

    Tính P(X=1)


Ph n ph i nh th c7 l.jpg

Hình dạng của phân phối nhị thức sẽ phụ thuộc vào p và n.

n = 5 P = 0.1

P(x)

.6

.4

.2

0

x

0

1

2

3

4

5

n = 5 P = 0.5

P(x)

.6

.4

.2

x

0

0

1

2

3

4

5

Phân phối nhị thức

Mean

  • n = 5 và P = 0.1

  • n = 5 và P = 0.5


Ph n ph i nh th c8 l.jpg

Phân phối nhị thức

Nếu X ~ B(n,p):

1) Trung bình

2) Phương sai và độ lệch tiêu chuẩn

  • n: số lần thực hiện thí nghiệm

  • - p: xác suất thành công ở 1 lần thí nghiệm

  • - q = 1- p.


Ph n ph i nh th c9 l.jpg

Phân phối nhị thức

Ví dụ

n = 5 P = 0.1

P(x)

Mean

.6

.4

.2

0

x

0

1

2

3

4

5

n = 5 P = 0.5

P(x)

.6

.4

.2

x

0

0

1

2

3

4

5


Ph n ph i poisson l.jpg

Phân phối Poisson

  • Số các biến cố xảy ra trong một khoảng thời gian cho trước.

  • Số các biến cố trung bình trên một đơn vị là .

  • Ví dụ

    Số người xếp hàng tính tiền ở siêu thị, số cuộc điện thoại đến bưu điện trong 1 ngày, số máy tính hư trong 1 ngày ở 1 khu vực, …


Ph n ph i poisson11 l.jpg

Phân phối Poisson

  • Biến ngẫu nhiên X nhận giá trị từ 0, 1, 2, … gọi là có phân phối Poisson với tham số  nếu

    k = 0, 1, 2, …


Ph n ph i poisson12 l.jpg

Phân phối Poisson

  • Trung bình

  • Phương sai và độ lệch tiêu chuẩn

Với  = số biến cố xảy ra trung bình trên 1 đơn vị


Ph n ph i poisson13 l.jpg

Phân phối Poisson

  • Ví dụ

    Trong một nhà máy dệt, biết số ống sợi bị đứt trong 1 giờ có phân phối Poisson với trung bình là 4. Tính xác suất trong 1 giờ có

    a. Đúng 3 ống sợi bị đứt.

    b. Có nhiều hơn 1 ống sợi bị đứt.


B ng tra ph n ph i poisson l.jpg

Bảng tra phân phối Poisson

Ví dụ: Tìm P(X = 2) nếu  = .50


Ph n ph i x c su t poisson l.jpg

Phân phối xác suất Poisson

 = .50

P(X = 2) = .0758


Ph n ph i poisson16 l.jpg

Phân phối Poisson

  • Hình dạng của phân phối Poisson phụ thuộc vào tham số  :

 =0.50

 =3.00


Nh l poisson l.jpg

Định lý Poisson

  • Cho X ~ B(n,p)

  • Dùng phân phối Poisson để xấp xỉ phân phối nhị thức khi n >> p.


M h nh poisson l.jpg

Mô hình Poisson

Mô hình Poisson :

+ Xét n phép thử Bernoulli.

+ Trong đó xác suất thành công là p.

+ Các phép thử độc lập với nhau.

(Kết quả của phép thử này không ảnh hưởng đến kết quả của các phép thử kia)

+ X – số lần xuất hiện thành côngtrong n phép

thử.

+ Trong đó n lớn ( n  100) và p nhỏ (p 0,01

và np 20).

Khi đó X ~ P().


M h nh poisson19 l.jpg

Mô hình Poisson

  • Ví dụ

    Trong một đợt tiêm chủng cho 2000 trẻ em ở một khu vực. Biết xác suất 1 trẻ bị phản ứng với thuốc khi tiêm là 0.001. Tính xác suất trong 2000 trẻ có không quá 1 trẻ bị phản ứng khi tiêm thuốc.


Ph n ph i u l.jpg

Phân phối đều

  • Tất cả các khả năng có thể xảy ra của biến ngẫu nhiên có phân phối đều có xác suất bằng nhau.

  • X có phân phối đều trong khoảng [a,b], ký hiệu X ~ U([a,b]).

f(x)

Tổng diện tích miền giới hạn bởi phân phối đều là 1.0

x

xmin

xmax


Ph n ph i u21 l.jpg

Phân phối đều

  • Hàm mật độ xác suất của phân phối đều trong đoạn [a,b]

f(x) =

với

f(x) = giá trị hàm mật độ tại điểm x

a = giá trị nhỏ nhất của x

b = giá trị lớn nhất của x


Ph n ph i u22 l.jpg

Phân phối đều

  • Kỳ vọng

  • Phương sai


Ph n ph i u23 l.jpg

Phân phối đều

Ví dụ: Phân phối đều trên khoảng 2 ≤ x ≤ 6

1

f(x) = = .25 for 2 ≤ x ≤ 6

6 - 2

f(x)

.25

x

2

6


Ph n ph i m l.jpg

Phân phối mũ

  • Biến ngẫu nhiên T (t>0) gọi là có phân phối mũ nếu có hàm mật độ xác suất

    Với

    •  số biến cố xảy ra trung bình trong một đơn vị thời gian.

    • t số đơn vị thời gian cho đến biến cố kế tiếp.

    • e = 2.71828

  • Ký hiệu: T ~ exp(t), T là khoảng thời gian giữa 2 lần xảy ra các biến cố.


Ph n ph i m25 l.jpg

Phân phối mũ

  • Hàm phân phối xác suất

  • Kỳ vọng và phương sai


Ph n ph i m26 l.jpg

Phân phối mũ

Ví dụ: Số khác hàng đến một quầy dịch vụ với tỷ lệ là 15 người một giờ. Hỏi xác suất thời gian giữa 2 khách hàng liên tiếp đến quầy dịch vụ ít hơn 3 phút là bao nhiêu.

  • Trung bình có 15 khách hàng đến trong 1 giờ, do đó  = 15

  • 3 phút = 0.05 giờ

  • T: thời gian giữa 2 khách hàng liên tiếp đến quầy.

  • P(T < .05) = 1 – e- t = 1 – e-(15)(.05) = 0.5276

  • Vậy có khoảng 52,76% khoảng thời gian giữa 2 khách hàng liên tiếp đến làm dịch vụ tại quầy ít hơn 3 phút.


Ph n ph i m27 l.jpg

Phân phối mũ

Ví dụ:

Trong một nhà máy sản xuất linh kiện điện tử, biết tuổi thọ của một mạch điện là biến ngẫu nhiên có phân phối mũ với tuổi thọ trung bình là 6,25 năm. Nếu thời gian bảo hành của sản phẩm là 5 năm. Hỏi có bao nhiêu % mạch điện của nhà máy khi bán ra thị trường phải thay thế trước thời gian bảo hành.


Ph n ph i chu n l.jpg

Phân phối chuẩn

  • Biến ngẫu nhiên X nhận giá trị trong R gọi là có phân phối chuẩn với tham số  và 2 nếu hàm mật độ xác suất

    Với: EX =  và VarX = 2.

  • Ký hiệu: X ~ N(, 2)


Ph n ph i chu n29 l.jpg

Dạng như một cái chuông

Có tính đối xứng

Trung bình = Trung vị = Mode

Vị trí của phân phối được xác định

bởi kỳ vọng, 

Độ phân tán được xác định bởi độ

lệch tiêu chuẩn, σ

Xác định từ + to  

f(x)

σ

x

μ

Phân phối chuẩn

Trung bình = Trung vị = Mode


Ph n ph i chu n30 l.jpg

Phân phối chuẩn

Bằng việc thay đổi các tham số μ và σ, ta nhận được nhiều dạng phân phối chuẩn khác nhau


Ph n ph i chu n31 l.jpg

Phân phối chuẩn

f(x)

Thay đổiμ dịch chuyển phân phối qua trái hoặc phải

Thay đổi σ làm tăng hoặc giảm độ phân tán.

σ

μ

x


H m ph n ph i c a ph n ph i chu n l.jpg

x

x0

0

Hàm phân phối của phân phối chuẩn

  • Xét biến ngẫu nhiên X có phân phối chuẩn với trung bình μ và phương sai σ2 , X~N(μ, σ2), hàm phân phối của X là

f(x)


X c su t c a ph n ph i chu n l.jpg

x

Xác suất của phân phối chuẩn

Xác suất X  (a,b) đo bởi diện tích giới hạn bởi đường cong chuẩn.

a

μ

b


X c su t c a ph n ph i chu n34 l.jpg

a

μ

b

a

μ

b

x

a

μ

b

Xác suất của phân phối chuẩn


Ph n ph i chu n h a l.jpg

f(Z)

1

Z

0

Phân phối chuẩn hóa

  • Xét biến ngẫu nhiên X ~ N(, 2). Chuẩn hóa X bằng cách đặt

  • Khi đó EZ = 0 và VarZ = 1. Ta nói Z có phân phối chuẩn hóa. Ký hiệu


Ph n ph i chu n h a36 l.jpg

Phân phối chuẩn hóa

  • Nếu X có phân phối chuẩn với trung bình là 100 and độ lệch tiêu chuẩn là 50, thì giá trị của Z ứng với X = 200 is

100

200

X

(μ = 100, σ = 50)

0

2.0

Z

(μ = 0, σ = 1)


Ph n ph i chu n h a37 l.jpg

Phân phối chuẩn hóa

  • Hàm mật độ

  • Hàm phân phối


T nh x c su t l.jpg

f(x)

x

a

b

µ

Z

0

Tính xác suất


T nh x c su t39 l.jpg

f(X)

0.5

0.5

μ

X

Tính xác suất


Tra b ng chu n h a n 0 1 l.jpg

Tra bảng chuẩn hóa N(0,1)

  • Để tìm xác xuất P(X<x0); chuẩn hóa đưa X về Z: tìm xác suất bằng cách tra bảng chuẩn hóa N(0,1).

Z


Tra b ng chu n h a n 0 141 l.jpg

Tra bảng chuẩn hóa N(0,1)

P(Z<1.04) = (1.04)= 0.8508


Tra b ng chu n h a n 0 142 l.jpg

.9772

.0228

Z

0

2.00

.9772

Z

0

-2.00

Tra bảng chuẩn hóa N(0,1)

.9772

Ví dụ:

P(Z < 2.00) =

 (2.00) = .9772

Z

0

2.00

Do tính đối xứng

(-z) = 1 - (z)

Ví dụ:

P(Z < -2.00) = (-2.00)= 1 – (2.00) = 1 -0.9772

= 0.0228


Slide43 l.jpg

Ví dụ

  • Giả sử X có phân phối chuẩn với trung bình là 8.0 và độ lệch tiêu chuẩn 5.0. Tìm P(X < 8.6).

X

8.0

8.6


Slide44 l.jpg

Ví dụ

μ = 8

σ = 10

μ= 0

σ = 1

X

Z

8

8.6

0

0.12

P(Z < 0.12)

P(X < 8.6)


Slide45 l.jpg

Ví dụ

Tra bảng chuẩn hóa

P(X < 8.6)

= P(Z < 0.12)

z

(z)

(0.12) = 0.5478

.10

.5398

.11

.5438

.12

.5478

Z

0.00

.13

.5517

0.12


Slide46 l.jpg

X

8.0

8.6

Ví dụ

  • Giả sử X có phân phối chuẩn với trung bình 8.0 và độ lệch tiêu chuẩn 5.0.

  • Tìm P(X > 8.6)


Slide47 l.jpg

Ví dụ

  • Tìm P(X > 8.6)…

P(X > 8.6) = P(Z > 0.12) = 1.0 - P(Z ≤ 0.12)

= 1.0 - 0.5478 = 0.4522

0.5478

1.000

1.0 - 0.5478 = 0.4522

Z

Z

0

0

0.12

0.12


X p x ph n ph i nh th c b ng ph n ph i chu n l.jpg

Xấp xỉ phân phối nhị thức bằng phân phối chuẩn

  • Cho X ~ B(n,p). Khi n lớn và p không quá gần 0 và 1.

  • Tính P(X < c)?

  • Tính P(a < X < b)?

    Dùng phân phối chuẩn.


X p x ph n ph i nh th c b ng ph n ph i chu n49 l.jpg

Xấp xỉ phân phối nhị thức bằng phân phối chuẩn

  • Đặt

     = EX = np

    2 = VarX = np(1-p)

  • Tạo biến ngẫu nhiên Z có phân phối chuẩn hóa từ phân phối nhị thức


X p x ph n ph i nh th c b ng ph n ph i chu n50 l.jpg

Xấp xỉ phân phối nhị thức bằng phân phối chuẩn


X p x ph n ph i nh th c b ng ph n ph i chu n51 l.jpg

Xấp xỉ phân phối nhị thức bằng phân phối chuẩn

  • Ví dụ

    Trong một cuộc bầu cử ở một thành phố, biết rằng 40% người dân ủng hộ ứng cử viên A. Chọn ngẫu nhiên 200 người, hỏi xác suất gặp được từ 76 đến 80 người ủng hộ ứng cử viên A là bao nhiêu?


Slide52 l.jpg

Ví dụ

  • E(X) = µ = nP = 200(0.40) = 80

  • Var(X) = σ2 = nP(1 – P) = 200(0.40)(1 – 0.40) = 48


  • Login