statistical relational learning
Download
Skip this Video
Download Presentation
Statistical Relational Learning

Loading in 2 Seconds...

play fullscreen
1 / 29

statistical relational learning - PowerPoint PPT Presentation


  • 282 Views
  • Uploaded on

Statistical Relational Learning. Pedro Domingos Dept. Computer Science & Eng. University of Washington. Overview. Motivation Some approaches Markov logic Application: Information extraction Challenges and open problems. Motivation. Most learners only apply to i.i.d. vectors

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'statistical relational learning ' - Audrey


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
statistical relational learning

Statistical Relational Learning

Pedro Domingos

Dept. Computer Science & Eng.

University of Washington

overview
Overview
  • Motivation
  • Some approaches
  • Markov logic
  • Application: Information extraction
  • Challenges and open problems
motivation
Motivation
  • Most learners only apply to i.i.d. vectors
  • But we need to do learning and (uncertain) inference over arbitrary structures:trees, graphs, class hierarchies,relational databases, etc.
  • All these can be expressed in first-order logic
  • Let’s add learning and uncertain inference to first-order logic
some approaches
Some Approaches
  • Probabilistic logic [Nilsson, 1986]
  • Statistics and beliefs [Halpern, 1990]
  • Knowledge-based model construction[Wellman et al., 1992]
  • Stochastic logic programs [Muggleton, 1996]
  • Probabilistic relational models [Friedman et al., 1999]
  • Relational Markov networks [Taskar et al., 2002]
  • Markov logic[Richardson & Domingos, 2004]
  • Bayesian logic [Milch et al., 2005]
  • Etc.
markov logic
Markov Logic
  • Logical formulas are hard constraintson the possible states of the world
  • Let’s make them soft constraints:When a state violates a formula,It becomes less probable, not impossible
  • Give each formula a weight(Higher weight  Stronger constraint)
  • More precisely:Consider each grounding of a formula
example friends smokers
Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Cancer(B)

Friends(B,A)

markov logic contd
Markov Logic (Contd.)
  • Probability of a state x:
  • Most discrete statistical models are special cases (e.g., Bayes nets, HMMs, etc.)
  • First-order logic is infinite-weight limit

Weight of formula i

No. of true groundings of formula i in x

key ingredients
Key Ingredients
  • Logical inference:Satisfiability testing
  • Probabilistic inference:Markov chain Monte Carlo
  • Inductive logic programming:Search with clause refinement operators
  • Statistical learning:Weight optimization by conjugate gradient
alchemy
Alchemy
  • Open-source software available at:
  • A new kind of programming language
  • Write formulas, learn weights, do inference
  • Haven’t we seen this before?
  • Yes, but without learning and uncertain inference

alchemy.cs.washington.edu

example information extraction
Example:Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.

segmentation
Segmentation

Author

Title

Venue

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.

entity resolution
Entity Resolution

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.

entity resolution13
Entity Resolution

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains”(AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.

state of the art
State of the Art
  • Segmentation
    • HMM (or CRF) to assign each token to a field
  • Entity resolution
    • Logistic regression to predict same field/citation
    • Transitive closure
  • Alchemy implementation: Seven formulas
types and predicates
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

types and predicates16
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue, ...}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Optional

types and predicates17
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Input

types and predicates18
Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Output

formulas
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas20
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas21
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas22
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas23
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas24
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas25
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

formulas26
Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

challenges and open problems
Challenges and Open Problems
  • Scaling up learning and inference
  • Model design (aka knowledge engineering)
  • Generalizing across domain sizes
  • Continuous distributions
  • Relational data streams
  • Relational decision theory
  • Statistical predicate invention
  • Experiment design
ad