1 / 12

# Calculations of Enzyme Activity - PowerPoint PPT Presentation

Calculations of Enzyme Activity. Enzyme Activity. Unit of enzyme activity: Used to measure total units of activity in a given volume of solution. Specific activity: Used to follow the increasing purity of an enzyme through several procedural steps. Molecular activity:

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Calculations of Enzyme Activity ' - Anita

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Calculations ofEnzyme Activity

Unit of enzyme activity:

Used to measure total units of activity in a given

volume of solution.

Specific activity:

Used to follow the increasing purity of an

enzyme through several procedural steps.

Molecular activity:

Used to compare activities of different enzymes.

Also called the turn-over number (TON = kcat)

Classical units:

Unit of enzyme activity:

mmol substrate transformed/min = unit

Specific activity:

mmol substrate/min-mg E = unit/mg E

Molecular activity:

mmol substrate/min- mmol E = units/mmol E

New international units:

Unit of enzyme activity:

mol substrate/sec = katal

Specific activity:

mol substrate/sec-kg E = katal/kg E

Molecular activity:

mol substrate/sec-mol E = katal/mol E

The rate of an enzyme catalyzed reaction is 35 μmol/min at [S] = 10-4 M, (KM = 2 x 10-5).

Calculate the velocity at [S] = 2 x 10-6 M.

Work the problem.

The rate of an enzyme catalyzed reaction is 35 μmol/min at [S] = 10-4 M, (KM = 2 x 10-5).

Calculate the velocity at [S] = 2 x 10-6 M.

First calculate VM using the Michaelis-Menton eqn:

VM [S] VM (10-4) VM (10-4)

v = -----------, so: 35 = ------------------ = --------------

KM + [S] 2 x 10-5 + 10-4 1.2 x 10-4

VM = 1.2(35) = 42 mmol/min;then calculate v:

42 (2 x 10-6) 84 x 10-6 v = ------------------------ = ------------ = 3.8 mmol/min 2 x 10-5 + 2 x 10-6 22 x 10-6

An enzyme (1.84 μgm, MW = 36800) catalyzes a reaction in presence of excess substrate at a rate of 4.2 μmol substrate/min. What is the TON in min-1 ?

What is the TON in sec-1 ?

Work the problem.

An enzyme (1.84 μgm, MW = 36800) catalyzes a reaction in presence of excess substrate at a rate of 4.2 μmol substrate/min. What is the TON ?

1.84 μgm μ mol E = ------------------------- = 5 x 10-5μmol E

36800μgm/μmol

4.2μmol/min TON = ------------------ = 84000 min-1

5 x 10-5μmol

What is the value of this TON (84000 min-1) in units of sec-1 ?

84000 min-1 1 sec-1

TON E = ------------------ x ---------- = 1400sec-1

60 min-1

Ten micrograms of carbonic anhydrase (MW = 30000) in the presence of excess substrate exhibits a reaction rate of 6.82 x 103μmol/min.

At [S] = 0.012 M the rate is 3.41 x 103μmol/min.

a. What is Vm ?

b. What is KM ?

c. What is k2 (kcat) ?

Work these.

• The rate in presence of excess substrate is Vmax

• so:

• Vmax = 6.86 x 103μmol/min.

• b. At [S] = 0.012 M the rate is 3.41 x 103μmol/min which is ½ Vmax so:

• KM = 0.012 M.

• This may also be determined using the

• Michaelis-Menton equation.

• c. Divide Vmax by μmol of ET to find kcat.

• kcat = 2.05 x 107 min-1